Representing Change by Aspect*

Peter Dolog, Valentino Vrani¢ and Méria Bielikova
Dept. of Computer Science and Engineering

Faculty of Electrical Engineering and Information Technology

Slovak University of Technology
Tlkovicova 3, 812 19 Bratislava, Slovakia,
{dolog,vranic,bielik}@elf.stuba.sk
http://www.dcs.elf.stuba.sk/"{dologp, vranic,bielik}

Abstract. We propose the application of aspect-
oriented programming to software configuration manage-
ment. We believe it could improve the change control
by providing a new basis for reasoning about a change.
To demonstrate this, we designed an abstract-oriented
extension to procedural languages where a change is rep-
resented by an aspect. Consequently, a change gains the
properties of an aspect: it becomes well-localized and sep-
arated from the (unchanged) base program. This goes
beyond the current capabilities of configuration manage-
ment methods and tools: the aspect representing the
change can be applied to other versions of the program
(possibly to different programs).

Keywords: aspect-oriented programming, change con-
trol, change representation.

1 Introduction

Software systems are developed and evolved in a series
of changes. Changes arise as requirements are extended,
reformulated, dropped or corrected, as faults are discov-
ered, and in many other situations. The change is often
required also due to a need for adapting the product to
the user’s context. We are witnesses of growing coop-
eration among software development companies. Many
(often distributed) teams work on the same release of the
software system in parallel. In such a situation, change
control becomes even more important.

The level of change control support provided by the ex-
isting software configuration management tools varies sig-
nificantly. Hence, if two companies decide to cooperate,
there is a big chance that they would have different tools
that provide different repository items representation, dif-
ferent structure representation, etc. The companies can

*This work was partially supported by Slovak Science Grant
Agency, grant No. G1/7611/20.

also have different configuration management process es-
tablished, including, for example, different branching and
merging strategy, what even more complicates keeping
track of changes in the source code.

We propose a solution to some of these problems by
treating a change at the source code level and by express-
ing it explicitly. To achieve this, we employ the aspect-
oriented programming, a new approach to programming
alming at separation of crosscutting concerns (see Sec-
tion 3).

The rest of the paper is structured as follows. First, we
put our approach in the context of the existing versioning
models (Section 2) and the aspect-oriented programming
(Section 3). Then we present an abstract aspect-oriented
extension to procedural languages (Section 4). Subse-
quently, we show how this extension can be concretized
to VBScript language (Section 5). Finally, we draw some
conclusions and point some directions for the further work
(Section 6).

2 Version Models and Change

A version model defines the entities to be versioned, ver-
sion identification and organization, as well as operations
for retrieving existing versions and constructing new ver-
sions [4]. Several version models are described in the lit-
erature and used in existing configuration management
tools. We focus on the core issue of versioning, namely the
organization of version space, or to be more specific—the
version description and representation. Our main interest
is to improve change control.

According to the entities being handled, the version
models are classified into state-based and change-based.
State-based models focus on the states of versioned items.
In such approach, versions are usually described in terms
of revisions and variants [2]. A configuration item (the
smallest unit of a system taken under version control) is
maintained usually at the file level. The change in state-

based models can be described as the difference between
two versions. Many commercial systems are state-based
(e.g., Microsoft Visual Source Safe, Rational ClearCase,
PVCS) [3].

The problem with state-based models is that a change
is maintained implicitly, during the modification of a
branch. Merging can be viewed as a re-application of all
the changes to the branches being merged. This requires
the extraction of the changes from the branches and their
subsequent application to the base.

In change-based models the change is treated as a first
class entity and managed explicitly by a developer, either
manually or by a tool. A version is considered as the re-
sult of the application of changes to a baseline. There are
several commercial change-based software configuration
management systems that have the ability to track the
logical changes rather than individual file changes (e.g.,
Continuus/CM, CCC/Harvest). They treat the change
at the level of the source code lines or at the level of the
file versions. Accordingly, they allow to create change
sets or change packages [13]. A change set consists of the
changed code lines. A change package contains references
to the file versions that are the compositions of logical
changes.

In a change-set model, changes are combined freely
to construct new versions according to the requirements.
In [4] such approach is denoted as change-based inten-
sional versioning. The use of change packages is denoted
as change-based extensional versioning, because version
set is defined explicitly by enumerating its members. In
this case, each version is described by changes relative to
some baseline.

Another change-based approach is based on change
identification by language constructs. This can be de-
noted as language-aware approach: the change is handled
by directives for source code inserting, deleting and edit-
ing augmented with the attributes of the change (e.g.,
who and when made the change, etc.). An example of
this approach is VIML (Versioned Text Markup Lan-
guage) [9] or conditional compilation.

The conditional compilation enables to use the prepro-
cessor directives to control the code fragments visibilities.
In this case, all changes (fragments) are stored in one file,
which is hard to maintain. Management of fragments’ vis-
ibilities is necessary for improving change control. This
approach is used, for example, in the EPOS system [5].

The change-based systems are not so widely used as
the state-based ones. The main reason is that devel-
opers think rather at the version-state level. However,
nowadays many state-based systems are being extended
to provide the change-based functionality (e.g., Rational
ClearCase) [8]. The objective is to improve change man-
agement and traceability of the change request in a soft-
ware development process.

The change representation influences the change con-
trol procedure, which consists of the four major steps [1]:
checking whether the change is needed,! analysis of causes
that led to change, planning the change, and change im-
plementation. In the context of the change control proce-
dure, we are concerned with the change implementation.

The problem with the surveyed change-based ap-
proaches is the granularity of the logical change. As we
mentioned, some of them treat the logical change as the
individual lines of the source code, while other are based
on representing change by preprocessor directives.

3 Aspect-Oriented Extensions

The main idea of the aspect-oriented programming
(AOP)—separation of concerns by separating the cross-
cutting concerns called aspects from the basic functional-
ity crosscut by them—is carried throughout several inde-
pendently developed approaches [10, 12]. Among them,
Xerox PARC AOP [14] holds a significant position. Fur-
ther in the text by the AOP we mean actually the Xerox
PARC AOP.

AOQP appeared as a reaction to the problem known from
the generalized procedure languages [7], i.e. programming
languages that use the concept of the procedure to cap-
ture the functionality.? In such languages the program
code fragments that implement a clearly separable as-
pect of a system (such as synchronization) are scattered
and repeated throughout the overall program code that,
in advance, becomes tangled. AOP aims at factoring out
such aspects into separate program units called by the
same name: aspects. Aspects crosscut the base code in
places called join points. These must be specified so as-
pects could be woven into the base code by the program
called weaver.

The join points can be static or dynamic. Static join
points can be identified in the program text itself. They
can be specified in terms of a programing language syntax
alone. An example of such a join point is the beginning or
end of a method or procedure body. Dynamic join points
are available at run time only. For example, a method
reception by an object is a dynamic join point. In the
weaving process, the static join points are resolved by a
simple program code insertion, while dynamic join points
can be resolved at run time only.

The special language constructs used to capture the
aspects and join points are known as the aspect-oriented
extension of the base language. The two types of aspect-
oriented extension regarding its relationship to the base

It is possible that some workaround for the existing activity
could be more effective than the change itself.

?Besides the procedural languages, these include functional and
object-oriented languages as well.

language can be distinguished: homogenous and hetero-
geneous. The homogenous extension, besides for some
additional constructs, relies on the base language to the
greatest possible extent, while the heterogeneous exten-
sion introduces a whole new language for capturing the
aspect-oriented part of the program. In general, there can
be several independent aspect-oriented extensions, han-
dled by the same or by separate weavers.

Not unlike programming languages in general, an
aspect-oriented extension (including the corresponding
weaver) can be designed to solve a specific problem, such
as the one presented in [7] (the filtering example), or to
serve a general-purpose, as the AspectJ language [15],
which is a homogenous, general-purpose aspect-oriented
extension to Java. While aspect-oriented extensions pro-
vide a new way of programming, they do so only in the
context of the language they extend. In other words, AOP
is a multi-paradigm approach in its very nature [12], and
AspectJ can be viewed as a multi-paradigm language [11].

4 Aspect-Oriented Extension for
Change Representation

As it was discussed in Section 2, current configura-
tion management approaches do not offer a satisfactory
change representation regarding the change maintenance
and re-applicability to different branches. The use of
AOP enables to maintain changes explicitly by captur-
ing a change into an aspect.

In order to enable change representation by aspect, the
aspect-oriented extension to a given programming lan-
guage should be provided. Since the changes are actually
changes of the program text, all the join points will be
statical. Further, the aspect-oriented extension should be
homogenous—to preserve the base language constructs,
and general-purpose—to cover all the types of changes
(which depend on the base language). Also, the join point
description should not affect the base program.

To illustrate aspect-oriented approach to change rep-
resentation, we developed an aspect-oriented extension
(inspired by AspectJ) to procedural languages. Proposed
language constructs are presented in Fig. 1. Different
type styles are used to distinguish among the keywords,
required parts and optional parts.

The aspects are placed into modules, possibly together
with the ordinary procedures which can be called from
within the aspects, i.e. inside of the block parts. The
block parts must be parsed either by the weaver, or by
the original language parser.

The introductions are used to introduce new procedures
and variables into modules (M;). The advices enable per-
forming a command block before, after or in place of the
procedures determined by a specified set of join points,

so-called pointcut. While before and after advices are
simple, the around advice requires some explanation. It
enables to run an initial block block;, then to proceed
with the next action, which is either another aspect, or
the original procedure body, in case there is no other as-
pect affecting the procedure. The optional return_clause
in after and around advices enables to modify the return
value (if the procedure returns one) before it is actually
returned to the caller.

The pointcut_specification is built out of the point-
cut primitives (listed in the bottom of Fig. 1) using
the logical operators and and or.®> The parentheses
can be used to declare the priority of subexpressions
evaluation. The first two primitive pointcuts, modules
and withincode, designate all the join points within
the modules M; and procedures specified by the pro-
cedure_signature, respectively. The calls pointcut
primitive designates all the procedure calls specified by
the procedure_signature. The definitions pointcut
primitive designates the actual definitions, i.e. bodies of
the procedures specified by the procedure_signature
(see Fig. 5 for an example). A before advice to a
definitions pointcut will insert its code after all the
declarations of variables in the specified procedure(s)
placed before the first non-declaration statement.

The wild cards * and can be used in proce-
dure_signature to denote any string of characters and
omitted arguments, respectively. This convention is used
in Aspectd, e.g. * px(int, *) denotes all the methods
whose name starts with p, with one int argument and
one argument of any type, returning a value of any type.
The most general signature—denoting all the methods—
is then * *(..).

Up to now we said nothing about the optional argu-
ment_list in advices. It is used to access the arguments
of the procedures denoted by the pointcut. Suppose we
want to make a before advice to the following C function:

int £f(int i) {return i*i;}
Consider these two advices:

1. before(): definitions(int f(int)) {i = i + 1;}

2. before(int x): definitions(int f(x))
{x=x+ 1;}

Both advices seem to do the same thing; they add one
to f’s argument before proceeding with the rest of f’s
body.* However, if we rename i in function f to j, the
first advice will fail to satisfy our intention (moreover,
it will produce a syntax error), so the second version is
obviously more robust.

3Since pointcuts are the sets of join points, the and and or oper-
ators have the meaning of set intersection and union, respectively.

4This is different from AspectJ where the method body is not
visible to advices.

Introductions:
introduction My, ..., M, {block}
Advices:

before (argument_list) : pointcut {block}
after (argument_list) :
around (argument_list) :
Pointcuts:
pointcut pointcutName (argument_list) :

Pointcut primitives:

modules(My,...,M,;)
withincode (procedure_signature)
calls(procedure_signature)

definitions(procedure_signature)

pointcut {block return_clause}

pointcut {block; proceed...blocks return_clause}

pointcut_specification

Figure 1: Aspect-oriented extension to procedural languages.

The proposed aspect-oriented extension is capable of
describing the following types of changes:

e introduction of a new procedure or (global) variable
into the module;

e extension of a procedure by a code before, after, or
instead of it;

e change to the procedure arguments and return value.

What all of these changes have in common is that they
are all about the functionality. The changes that cannot
be described at the level of functionality are very hard
(or impossible) to deal with using the aspect-oriented ap-
proach. These include renaming a procedure or variable,
adding a white space or comment, changing the position
of a procedure in the source code, etc.

A version is obtained by weaving the aspects that cap-
ture the change into the base program. Since this version
might become a subject of modification as well, it should
be human readable. This is different from the AOP itself
where the process of weaving yields only an intermediate
product not intended to be read by a human. The aspect-
oriented extension proposed principally satisfies this re-
quirement, since it relies on static join points only.

5 Case Study: Script Customiza-
tion
We will show now how the approach we proposed in the

preceding section could help in solving a problem of syn-
chronizing the local customization with the global version

of a program in script languages by the means of an ex-
ample. We will use VBScript-like syntax since VBscript
is widely used as a language for dynamical content gener-
ation and design of the web pages. It is the core language
for Microsoft’s asp pages. Further, some software houses
use VBScript as the language for customizing their prod-
ucts, e.g. InteractCommerce corp.’s SalesLogix.

Suppose that two teams work on one system. The
teams received change requests regarding the same script,
shown in Fig. 2, which is a part of the system, at the same
time, i.e. before synchronization of branches, as depicted
in Fig. 3. The purpose of the script is to extract the list
of sales opportunities from the opportunity table in the
test database. The change request received by the first
team is about extending the list of opportunities by the
list of products. A new recordset, as well as the SQL
statement and several lines of VBScript code must be
added in order to accomplish the task of extracting the
records from the table and generating the page containing
the data.

The modified script is presented in Fig. 4; some com-
mands the same as in Fig. 2 have been omitted (indi-
cated by ellipsis). The code between the change and end
change comments can be separated into the aspect mod-
ule, as presented in Fig. 5. The affected module is spec-
ified by the modules designator in both advices. The
declarations of additional variables are provided in the
before advice. The conjunction of the definitions and
modules designator states that the sequence of variable
declarations in the advice is to be merged after all the
declarations in the main procedure which are placed be-
fore the first non-declaration statement. The sequence of
the directives to be run after the ro.close method in-

sub main
Dim con ’Connection object
s ’Select statement
Dim ro ’Recordset object
Set Server.CreateObject ("ADODB.Connection")
con.Open "Test"
s = "SELECT * FROM opportunity"
Set con.Execute(s)
call gener_data(ro)
ro.Close
con.Close
Set ro = Nothing
Set con = Nothing
end sub

Dim

con =

ro =

Figure 2: The code base in VBScript.

Team1's Team 2’'s

change change

¢ i

Figure 3: The branching.

vocation (specified by the calls designator) within the
original main procedure (specified by the withincode des-
ignator) has been enclosed into the after advice. The
result of the merging, i.e. weaving, will be the same code
as displayed in Fig. 4.

The other change request addressed to the second team
resulted in the script shown in Fig. 6. The second team’s
change consists of adding the while loop for updating
the applied and the date_of _application fields for each
record in the opportunity table, and of adding the se-
quence of commands that generate the list of market-
ing campaigns from the marketing table. We can apply
the aspect from Fig. 5 to the code in Fig. 6 without any
change.

However, that change could have been separated into
the aspect, too, if both teams used the aspect-oriented
approach. In that case, we would simply apply the two
aspects subsequently in order to obtain both functionali-
ties.?

5The priority of aspects is not significant here, but this is not so
in general.

sub main

’x*xkchange of declarations***
Dim rp ’Recordset object

Dim s2
Dim c ’Command object
’x¥xkend of change***
Set con =

’Select statement

ro.Close

?x*kkchange***

s2 = "SELECT * FROM product"

Set ¢ = Server.CreateObject ("ADODB.Command")
c.ActiveConnection =
c.CommandText = s2
Set rp = c.Execute
call gener_data(rp)

con

rp.close
rp = Nothing
¢ = Nothing

’x**kend of change***

end sub

Figure 4: The change performed by the first team.

6 Conclusions

We proposed a new approach to change-oriented version-
ing based on the aspect-oriented programming. The con-
tribution of this paper is the proposal of the technique
aimed to simplify change control by reifying the changes
into language-level entities: a change is represented by an
aspect and maintained explicitly by a developer.

A homogenous, general aspect-oriented extension has
to be provided for a given programming language first.
For the purposes of our approach, it is sufficient if this
extension supports static join points. Since procedural,
functional and object-oriented languages are easily ex-
tended to support the AOP with static join points, this
approach is low-cost. We proposed such an extension to
procedural languages. Moreover, it can be expected that
general aspect-oriented extensions to other programming
languages will be developed and provided for the sake of
the AOP itself, so no additional effort would be necessary
to employ this approach in such languages. This can be
denoted as self-supported change management: a change
is represented by the constructs that are a part of the
programming language itself.

We assume this as one of the main advantages of the
proposed version space representation. It provides a new
base level for the change control; it is a move from the
change control at the line level to the one at the program-
ming language semantics level. In small software projects
it is directly usable even without a software configuration
management tool. The change comprehension and ori-

before(): modules(script) && definitions(main)
begin
Dim rp ’Recordset object
Dim s2 ’Select statement
Dim ¢ ’Command object
end before

after () : modules(script) && withincode(main)
&& calls(ro.close)

begin
s2 = "SELECT * FROM opportunity_product"
Set ¢ = Server.CreateObject ("ADODB.Command")
c.ActiveConnection =
c.CommandText = s2
Set rp = c.Execute
call gener_data(rp)
rp.close
rp = Nothing
¢ = Nothing

end after

con

Figure 5: The change separated into the aspect.

entation in the source code is easier because the change
is well-localized in the aspect and need not be searched
for. A change is possibly re-applicable as is or with some
adaptation of the aspect involved (white-box reuse). Ac-
tually, the aspect can be applied to a completely different
module than it was intended for by a simple modification
of the pointcut.

Aspect-oriented approach can be used also in
post-deployment configuration management [6] for
parametrization (modification of a software system to
take into account the local site context). The local con-
text can be represented by an aspect. The application
of the relevant aspects provides customization of the new
product version according to the local context (developed
for the previous version). Obviously, new aspects will be
also created, in order to customize new features in the
current version of the product.

Our approach can be used with existing software con-
figuration management tools. Moreover, our approach is
independent of the model employed by software configu-
ration management tools. An aspect is a separate item,
so it can be handled in both basic version models (state-
based and change-based). It also supports the implicit
long transaction maintenance because aspect itself repre-
sents a change and it is up to the developer to decide when
the change should be committed. As aspects can be sim-
ply plugged in or out before the compilation, adding of an
individual change into a version or substracting a change
from a version (similarly as in the change-set approaches)
is simple. Even more, the aspects can be combined into
change packages. A change request could be then directly
assigned to the corresponding aspect or change package

sub main

’x*xkchange of declarations***

Dim rm ’Recordset object

Dim com ’Command object

Dim str ’String - select statement
’xx*end of change declarations**x*
Set con =

call gener_data(ro)

’ ***change***

While Not ro.EOF
ro.Fields("applied") = ’T’
ro.Fields("date_of_application") = Now

Loop
str = "SELECT * FROM marketing"
Set com = Server.CreateObject ("ADODB.Command")

com.ActiveConnection =
com.CommandText = str
Set com.Execute
call gener_data(rm)
rm.close

con

rm =

rm = Nothing

Nothing

’x*kend of change ***
ro.Close

com =

end sub

Figure 6: The change performed by the second team.

(indicated by the appropriate identifiers).

Our work is now oriented toward a deeper elaboration
of practical use of the proposed approach. Some addi-
tional mechanisms should be added to manipulate ver-
sion history and versions themselves. In order to be able
to control the changes effectively, some meta-data should
be stored within each change (e.g., who and when made
the change). In order to follow a version history, the
meta-data related to changes should be processed and in-
terpreted.

On the other hand, we are already able to partially
track the version history, but it is difficult to determine
which version was created by a developer and which is
just a potential version when storing only changes. The
potential versions can be obtained by applying the combi-
nations of the aspects. However, not all potential versions
make sense [4].

An additional problem is that the aspect representing a
change can become a subject of change, too. As a conse-
quence, a method of dealing with the change of a change
should be proposed. This problem arises in any change-
based version model, of course, but a special method is
needed here because our approach works at other level
of change control than traditional change-based version
models.

References

[1]

[2]

3]

[4]

[6]

[7]

George W. Allan. An Holistic Model for Change
Control, pages T703-707. Plenum, New York,
1997. Available at http://www.dis.port.ac.uk/
~allangw/chng-man.htm. Accessed on March 6,
2001.

M. Bielikovd and P. Névrat. An approach to au-
tomated building of software system configurations.
Int. Journal of Software Engineering and Knowledge
Engineering, 9(1):73-95, 1999.

Jim Buffenbarger and Kirk Gruell. A branch-
ing/merging strategy for parallel software develop-
ment. In Jacky Estublier, editor, Proc. of 9th
Int. Symposium on System Configuration Manage-
ment, pages 8699, Tolouse, France, September 1999.
Springer LNCS 1675.

Reidar Conradi and Bernhard Westfechtel. Ver-
sion models for software configuration management.
ACM Computing Surveys, 30(2):232-282, June 1998.

Bjorn Gulla, Even-André Karlsson, and Dashing
Yeh. Change-oriented version descriptions in EPOS.
Software Engineering Journal, 6(6):378-386, Novem-
ber 1991.

Dennis Heimbigner and Alexander L. Wolf. Post-
deployment configuration management. In Ian Som-
merville, editor, Proc. of 6th Int. Workshop on
Software Configuration Management, pages 272-276,
Berlin, Germany, March 1996. Springer LNCS 1167.

Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Christina Vidiera Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-oriented pro-
gramming. In Mehmet Aksit and Satoshi Matsuoka,
editors, Proc. of 11th FEuropean Conf. on Object-
Oriented Programming (ECOOP’97), Jyvaskyla,
Finland, June 1997. Springer LNCS 1241. Available
at [15].

David B. Leblang. Managing the software develop-
ment process with ClearGuide. In Reidar Conradi,
editor, Proc. of 7th Int. Workshop on Software Con-
figuration Management, pages 66-80, Boston, USA,
May 1997. Springer LNCS 1235.

Fabio Vitali and David G. Durand. Using ver-
sioning to support collaboration on the WWW.
In Proc. of jth World Wide Web Conference,
1995. Available at http://www.w3.org/pub/
Conferences/WWW4. Accessed on March 6, 2001.

[10] Valentino Vrani¢. Multiple software development
paradigms and multi-paradigm software develop-
ment. In J. Zendulka, editor, Proc. of the Informa-
tion Systems Modelling 2000, pages 191-196, Roznov
pod Radhostém, Czech Republic, May 2000. MARQ.

[11] Valentino Vranié. AspectJ paradigm model: A ba-
sis for multi-paradigm design for AspectJ. In Proc.
of Third International Conference on Generative
and Component-Based Software Engineering (GCSE
2001), Erfurt, Germany, September 2001. Springer.

Accepted for publishing.

[12] Valentino Vrani¢. Towards multi-pradigm software
development. Submitted to Journal of Computing

and Information Technology (CIT), 2001.

[13] Darcy Wiborg Weber. Change sets versus change
packages: Comparing implementation of change-
based SCM. In Reidar Conradi, editor, Proc. of
7th Int. Workshop on Software Configuration Man-
agement, pages 25-35, Boston, USA, May 1997.

Springer LNCS 1235.

[14] Xerox PARC. Aspect-Oriented Programming home
page. http://wuw.parc.xerox.com/aop. Accessed

on July 11, 2001.

[15] Xerox PARC. AspectJ home page.

aspectj.org. Accessed on July 11, 2001.

http://

Peter Dolog received his Bc. (BSc.) in 1998, and his Ing. (MSc.)
in 2000, both in information technology, and both from Slovak Uni-
versity of Technology in Bratislava. Since 2000 he is a PhD student
at the Department of Computer Science and Engineering, Faculty of
Electrical Engineering and Information Technology of Slovak Uni-
versity of Technology in Bratislava. His research interests include
hypermedia systems modelling, adaptive presentation of informa-
tion in the Internet, and new approaches to software engineering
in general. He is a member of the Slovak Society for Computer
Science.

Valentino Vranié received his Bc. (BSc.) in 1997, and his Ing.
(MSc.) in 1999, both in information technology, and both from
Slovak University of Technology in Bratislava. Since 1999 he is a
PhD student at the Department of Computer Science and Engi-
neering, Faculty of Electrical Engineering and Information Tech-
nology of Slovak University of Technology in Bratislava. His main
research interests are multi-paradigm software development and
aspect-oriented programming. He is a member of the Slovak So-
ciety for Computer Science.

Madria Bielikova received her Ing. (MSc.) in 1989 from Slovak
University of Technology in Bratislava, and her CSc. (PhD.) degree
in 1995 from the same university. Since 1998, she is an associate
professor at the Department of Computer Science and Engineering
at Slovak University of Technology. Her research interests include
knowledge software engineering, software development and manage-
ment of versions and software configurations, adaptive hypermedia
and educational systems. She is a member of the Slovak Society for
Computer Science, IEE, ACM, IEEE and its Computer Society.

