
An Approach to Detection Ontology Changes

Michal Tury
Institute of Informatics and Software Engineering

Faculty of Informatics and Information
Technologies, Slovak University of Technology

Ilkovičova 3, 842 16 Bratislava, Slovakia
misotury@gmail.com

Mária Bieliková
Institute of Informatics and Software Engineering

Faculty of Informatics and Information
Technologies, Slovak University of Technology

Ilkovičova 3, 842 16 Bratislava, Slovakia
bielik@fiit.stuba.sk

ABSTRACT
Ontologies change and evolve both on the level of schema
and individuals in order to meet requirements of changing
world. Changes involve adding, deleting and modifying el-
ements in the ontology both on structural (schema related)
and content (individuals related) levels. The changes can
lead to incorrect conclusions and can cause malfunction of
systems, which use ontology data. In this paper we de-
scribe a proposal of the method for automated detection of
currentness of presented data, including meta-data, which
are represented by an ontology. Method comes out from a
detection of changes between different versions of the ontol-
ogy. Besides identifying modifications in the ontology, the
purpose of the method lies also in identifying equivalent el-
ements, thanks to which we are able to track information
sources over time. We describe possibilities of automated
identification of changes between ontologies using heuristic
methods and their realization as a software tool called On-
toDiff for comparing ontologies.

Categories and Subject Descriptors
H.5.4 [Information Interfaces and Presentation]: Hy-
pertext/Hypermedia; D.2.9 [Management]: Software con-
figuration management

General Terms
Algorithms, Design, Experimentation

Keywords
Ontology change, structural change, content change, heuris-
tics, relative text comparison, OntoDiff software tool

1. INTRODUCTION
Nowadays, there exist various studies, which deal with

a research in outdating and evolution of the web [3, 6].
According to the results of Online Computer Library Cen-
ter [10], around 50 % of web pages become unavailable every

.

year. We can assume that the semantic web evolution can
progress with the same speed (or even faster) as the stan-
dard web. This is also the main reason why it is inevitable
to research ways how to ensure that meta-data will be con-
sistent with the content they describe for the whole time
of their existence. Ontologies, which are corner stone the
semantic web, consist of classes, properties, individuals and
relations between these objects. The ontology, which is used
for describing a part of the world, can be created by several
people. Every human can model (and also perceive) the
same part of the world in different ways. Even if the ontol-
ogy is created only by one human, he can create different
versions of the same ontology over time.

Consider for example two versions of an ontology, whereas
the only difference between the ontology versions is in the
name of a class, which is used by a software agent for in-
formation search in the ontology. This agent is developed
to support only one version of the ontology, so it cannot
work with a newer version, because it does not know the
class identifier and is unable to identify particular individ-
uals. But, if the agent knew differences or mappings be-
tween classes in different versions of the ontology, it would
be possible for it to make the particular class or individuals
accessible. In this manner, the agent could work also with
other versions of the ontology, not only with ontologies it
was created for.

Differences between two versions of an ontology could be
simple, like using different names for classes or slots, using
different data types and restrictions, but could also be rather
complex, like changes in the class hierarchy or in data se-
mantics when changing the application domain. Detecting
the ontology changes can be used for checking currentness
of data, which are delivered to the user. Let us consider
stock exchange news or job offers. The ontology describing
listed parts of the world can be – on the semantic level –
still the same for certain period of time; it means that em-
ployer’s salary or stock price always have the same meaning.
But on the content level (including the instances), the ontol-
ogy could change over time more frequently. These changes
involve adding new job offers, modification of employer’s
salary data, changes in company’s stock price, etc.

We describe an approach to automated detection of cur-
rentness of data (including meta-data) represented by an
ontology. We proposed a method that comes out from the
identification of changes between different versions of the
ontology. Besides identifying modifications in the ontology
versions, the purpose of the method lies also in identifying
semantically equivalent elements, thanks to which we are



able to track information sources over time and reuse soft-
ware components that work on defined data represented by
the ontology in several applications where the ontology has
changed. We describe heuristics proposed for automated de-
tection of changes between the versions of an ontology and
their validation by means of developed software tool called
OntoDiff aimed at comparing ontologies.

The paper is organized as follows. Section 2 describes
an overview of our approach to ontology changes detection.
Next, we describe change detection between two ontologies
at the structural level (Section 3) and also at the content
level (Section 4). In Section 5 we present a method for rela-
tive text comparison, which is used for the comparison of the
ontology versions individuals. Prototype implementation of
presented approach – a software tool OntoDiff for compari-
son ontology versions – is described in Section 6. The paper
concludes with a summary of our work and a brief discussion
of future research.

2. OVERVIEW OF ONTOLOGY CHANGE
DETECTION

Research in the area of ontology evolution covering change
detection and management is currently highly active. There
still remain open issues so appropriate tools for managing
ontology evolution efficiently (from the point of human view,
i.e. automatically) are still missing [4].

Some of existing approaches are devoted to automatic cap-
ture of changes [9] and some are more concerned with on-
tology evolution and change propagation [11]. Various clas-
sifications of ontology changes are described in literature,
e.g. in [7] the authors consider elementary changes (modi-
fications to one single ontology entity), composite changes
(modifications to the direct neighborhood of an ontology en-
tity) and complex changes (modifications to an arbitrary set
of ontology entities). Similarly, the authors in [6] consider
basic changes related to a single ontology entity and complex
changes that group basic changes into logical units. These
approaches consider primarily changes at the level of ontol-
ogy schema definition. Detection of changes on both schema
definition and ontology individuals are interconnected and
it is important to cover both. Such view has been presented
recently in [2] for measuring similarity within and between
ontologies where three levels on which the similarity between
two entities (concepts or instances) can be measured are de-
fined: data layer, ontology layer, and context layer that cope
with the data representation, ontological meaning and the
usage of these entities, respectively.

We consider changes not only at the level of the ontology
schema itself (we call them structural level changes alike in
[8]), but also changes at the level of individuals (we call them
content changes). In the case of structural level changes
we inspect parts of the ontology which define classes, their
slots, domains, ranges, relations between classes, restric-
tions, etc. Content level is represented by individuals of
classes. Inspecting on the content level changes includes not
only checkup of consistency of individuals with classes they
are instances of, but also detecting changes in the context
of classes, values of their slots, a comparison individuals
between two versions, and identifying identical, modified,
added and deleted individuals.

During the checkup of currentness of information two ver-
sions are inspected. Between these versions, it is necessary

to identify changes and identify parts of versions which are
identical (or similar); it means to determine the mappings
between these parts. We understand the process of identi-
fying changes between two versions as a process of finding
modified, added and deleted parts.

Several approaches can be used for the change detection:

• finding identical elements in ontologies – the simplest
approach based on comparing structures and objects
and on finding compliances,

• heuristic methods – heuristics extend previous tech-
nique by rules, which help deduce new conclusions
from imperfect or incomplete information on changes,

• methods of computational intelligence, like neural net-
works, genetic algorithms that are trained for particu-
lar cases.

Mentioned methods allow us to identify differences be-
tween two versions, whereas these differences can have di-
verse character. Figure 1 depicts an example of identified
changes between two ontology versions on the structural
level. The relation between a class and a subclass is rep-
resented with full arrow. Dashed arrows represent mapped
classes; it means their semantics in both versions is consid-
ered equivalent. For example, the class hardware in ver-
sion V1 is mapped to the class hardware in version V2. We
can also see that mappings exist not only between identical
classes, e.g., classes IT in version V1 and information tech-
nologies in version V2 have the same semantics, but their
names are different. Class software in version V1 is marked
with a dagger because in reference to version V2 this class
is removed. Alike, classes domain and networks are marked
with grey color, because in reference to version V1, they are
new in version V2.

Figure 1: Example of detected changes between two
ontology versions on the structural level.

Aside from the known terms like class, slot, individual, we
use thereinafter the following:

• element – any part of an ontology for which we are
usually looking for its equivalent,

• element type – is used to specify type of the element;
it means that it defines if the element is class, slot,
individual, etc.,

• equivalent element – element E2 in version V2, which
has the same semantics as element E1 in version V1.



Following the example presented in Figure 1 it is possible
to describe identified changes using three operations:

• adding – an element occurs in version V2 and does not
occur in version V1;

• mapping – determines which element from version V1 is
semantically equivalent to the element in version V2;
this operation includes also modifying of an element
while its semantics remains unchanged;

• removing – element occurs in version V1 and does not
occur in version V2.

These operations can serve for storing differences between
two versions of the ontology. It is matter of course that
these operations should contain data, which identify versions
of the ontology and also data for identifying elements of
versions on which operations should apply.

In the case, we use the mapping or removing operation it
is sufficient to identify the class, slot or individual. In the
case of the adding operation we must also use additional
meta-data for specifying added element. Descriptions of op-
erations can be enriched with additional information like
purpose, name of authors, time validity; those values have
to be defined by a user. It is also desirable to note that the
OWL language (commonly used for representing ontologies)
supports storing information about class mappings.

Representation of changes can be realized on the ontology
level, language level (used for the ontology representation),
or on the level of specially defined change representation
language. Change representation on the ontology level re-
quires defining classes and slots in a way that we are able
to specify directly in individuals which ontology elements
are in relations with elements of another version (together
with type of the relation). These definitions are part of the
ontology and so they become a part of modeled domain in-
directly. The main disadvantage of this approach is that the
very definition of representation of changes can be liable to
changes, so it is necessary to use another tool for finding and
managing these changes as the case may be that undesirable
infinite loops occur in the ontology.

For representing changes on the ontology representation
language level it is possible to use the mapping support al-
ready defined in OWL. On the structural level this map-
ping can be realized using attributes equivalentClass, equiv-
alentProperty and on the content level using the attribute
sameAs. These attributes are supported from the OWL Lite
version.

The third option is to define new format for describing
changes. Because there are practically no limits we have
highest count of possibilities in this case. So we can create
a new XML based format, or binary format for higher effec-
tiveness or use programming language class hierarchy and
transform those classes into another shape. An example of
such approach is CDL – Change Definition Language [11].

We define the process of changes identification in such
a way that all elements in version V1 (older version) are
declared as removed and all elements in version V2 (newer
version) are declared as added. We look for mappings be-
tween elements in both versions. The process of the map-
pings identification results in the state where in old version
removed and mapped elements are identified, and in new
version mapped and added elements are detected. This also
simulates the modify operation.

3. STRUCTURAL LEVEL CHANGES
The main objective of structural level change identifica-

tion is to compare two versions of the ontology on the ontol-
ogy schema level, identify equivalent elements (e.g., equiv-
alent classes, equivalent class properties) and to find differ-
ences. These changes have to be submitted to deeper anal-
ysis, where it is necessary to find eventual relations between
two versions. It means to find out if the change is adding,
removing or modifying some element. Similarity between
two versions can be expressed by the equivalence relation
of their elements. The mapping between elements of two
versions of the ontology is established and relationship be-
tween these elements is described. In the case of added or
removed elements we have to create a description of this
transformation.

To detect the changes on the structural level we defined
and realized six heuristics for detecting equivalent parts of
ontology versions motivated by [9, 8]. As it stands out
from the nature of heuristics, the success cannot always be
achieved by their application. The detection may be incor-
rect, i.e. it is possible that application of a heuristic will
result to marking two classes as equivalent, but they are not
actually semantically equivalent (as we work only on the
structural level). That would not be such a big problem,
because changes in these classes have to be identified and
that way we can detect also internal differences. Despite of
that overall semantics of classes can be different. In case
this event will occur, the user himself will have to decide, if
classes are or are not equivalent.

In the following description of heuristics, we use E for
elements, V for versions and C for classes.

Elements with the same name
Two elements E1 ∈ V1 and E2 ∈ V2 are equivalent, if they
have the same name and type. This heuristic describes stan-
dard situation, when we are looking for basic mappings be-
tween two ontology versions. Example of this kind of map-
ping can be seen in Figure 1 between classes hardware both
in V1 and V2.

One nonequivalent subclass
If two classes C1 ∈ V1 and C2 ∈ V2 that are equivalent have
exactly one subclass, which has no equivalent, then we mark
these two subclasses as equivalent. This situation occurs for
example in cases, when the name of a subclass has changed.

Several nonequivalent subclasses
Let C1 ∈ V1 and C2 ∈ V2, C1 and C2 are equivalent, subC1 is
a subclass of C1 and subC2 is a subclass of C2, subC1 has all
slots equivalent with subC2, whereas these subclasses have
their slots different from other subclasses of their parent
class, then subC1 and subC2 are equivalent.

Example illustrating this situation is depicted in Figure 2,
where in version V2 we have added into the class IT a new
subclass system administration. We also have changed the
name of one subclass from hardware in version V1 to hard-
ware/networks in version V2. In this case, the class IT has
two nonequivalent subclasses. Because classes hardware in
version V1 and hardware/networks in version V2 have slots
with the same names and classes have only different names,
we consider them as equivalent. From this reasoning we can
also deduce that the class system administration is a new
class, and thus it represents added element.



Figure 2: Example of several nonequivalent sub-
classes.

Change of names with the same prefix or suffix
If C1 ∈ V1 and C2 ∈ V2 are equivalent and all subclasses
of C1 have the same names with subclasses of C2 except of
constant prefix or suffix, then subclasses C1 are equivalent
with subclasses C2.

Example of using this heuristic is depicted in Figure 3.
Compared to version V1, the prefix ’-IT’ is added to both
subclasses of the class IT in version V2.

Figure 3: Example of name change by adding the
same prefix.

This heuristic can be extended by the notion of “similar
names”, i.e. we consider equivalent subclasses if their names
do not differ considerably (syntactically). For determining
similarity we use relative text comparison method described
in Section 5. Another extension is in detecting synonyms,
which can discover semantically equivalent names of classes
regardless their different names.

Nonequivalent parent class
If C1 ∈ V1 and C2 ∈ V2 have equivalent all subclasses, then
C1 and C2 are equivalent.

Figure 4 illustrates this case, where the name of parent
class has changed from acronym (IT ) to full name (informa-
tion technologies). However, all subclasses of these classes
remained unchanged so it is possible to find the equivalence
relation between them. This means that their parent classes
can be declared as equivalent too.

One nonequivalent slot
If C1 ∈ V1 and C2 ∈ V2 are equivalent and both classes have
exactly one nonequivalent slot, these slots are considered
equivalent.

Figure 4: Example of nonequivalent parent class.

This situation occurs when the name of a slot in the class
is changed.

According to [9], the simplest heuristic “elements with the
same name” is applied in 97.9 % of all cases. Following this
number, we can deduce that changes in subsequent versions
of ontologies are normally small. From the perspective of
effectiveness of change detection this fact should be consid-
ered as a very positive. It means that after applying this
heuristic other heuristics will have to scan smaller part of
the ontology version. On the other hand, it does not mean
that other heuristics will seek only 2.1 % part of the ontol-
ogy. The reason for this lies in fact that when using some
heuristic (for example nonequivalent parent class) it is nec-
essary to search also in some already mapped elements, for
example to detect mapped subclasses. In spite of this fact
we can assume that after searching for elements with the
same name, the other heuristics will perform faster, because
they will work on relative smaller set of elements.

Besides the way how heuristics determine equivalence be-
tween elements, serious impact on successful detection of
changes has also the order in which the heuristics are ap-
plied on an ontology. As we said, the most frequently ap-
plied heuristic is “elements with the same name”. So, if we
apply this heuristic as first, we can radically reduce the set
of classes which enter other heuristics. On the other hand,
sooner application of heuristics, which work with more at-
tributes, can lead to more accurate results. The reason is
that heuristics can find eventual equivalence of elements on
more precise level. Unfortunately, this approach is ineffi-
cient, because larger set of elements needs to be compared.

After detection of changes on the structural level, it is
possible to further specify identified changes, which can help
detecting changes on the content level (the level of ontology
individuals). In the case of added or removed element on
the structural level, we can accurately specify what should
and should not be on the content level. For example, if we
add a slot into the class, we know that in new version of the
ontology the individuals of this class can have defined values
of this new slot.

For easier detection of changes on structural level, we de-
fine also a level of element mappings. This level is repre-
sented as an attribute of mapping operation and determines
if there were identified changes in internal structure of the
element. In this way we are able to identify three levels of
mapping:

• without change – structure of the element and also its
name are identical in both versions,

• isomorphic change – structure of the element is iden-
tical in both versions, but names are different,



• semantic change – internal structure of the element is
changed.

Mapping of slots has significant impact on values, which
they contain in individual versions of the ontology. The
value of a slot depends not only on its meaning, but also
on the form of expressing this value. For example, if we
would have a slot, which defines length, we should distin-
guish whether the length is given in miles, kilometers, feet
or inches. In this case relations between values for each slot
mapping should be defined separately. This relation can be
defined for example as transformational function from value
in old version into the value in new version of the ontology.

4. CONTENT LEVEL CHANGES
The main objective of checkup on the content level is to

compare two versions of the ontology, identify equivalent
parts, i.e. identical/similar individuals, identical/similar val-
ues of slots in individuals, etc. and to find changes between
them. Similarly as on the structural level, these changes
have to be exposed to a deeper analysis. The main pur-
pose of this analysis is to find eventual relations between
both versions. It means to determine whether it is an addi-
tion, deletion or modification of some part of the ontology
together with an importance of the change.

Change detection on the content level depends on identi-
fied changes on the structural level. The basic element of the
ontology, which serves as an input for changes detection on
this level is a class individual. Because internal structure of
the individual comes out from the internal structure of the
class, which it is instance of, the identification of changes
have to reflect identified changes on the structural level. We
already know classes, which are new, deleted or equivalent,
so we are able to achieve higher effectiveness of change iden-
tification as on the structural level.

Change detection on the content level uses similar heuris-
tics as those used on the structural level. Individuals define
values of class slots and these values can contain literals
and also URIs of some resources. During the comparison of
these values and evaluation of these comparisons the basic
question emerges. It is known fact that in case of even the
smallest mistake (e.g., typing error) in URI notation, the
resource becomes unavailable or references to another, not
intended resource (e.g., typing errors in parameters in GET
method). In the case of literals (especially text literals), the
situation is quite opposite. Here the typing error is generally
not interesting for the user and the user does not apprehend
its correction as change. The user can remark this error,
but in most cases he will understand the original text and is
not interested in emphasizing such change. Based on this,
we distinguish the type and meaning of compared data.

Definition a mechanism for simple comparison of two lit-
erals is trivial. This type of comparison is supported prac-
tically in all modern programming languages. When using
this type of comparison, we simply take two strings and find
out whether they are identical.

We proposed a comparison mechanism that takes into
account a threshold value determining the number of dif-
ferences between two strings. If the number of differences
stays under defined threshold value, we can declare these two
strings as similar (or relatively identical). We allow users to
set up the threshold value, and give them also possibility
to visualize in readable form reasons why two strings were

declared as relatively identical or not relatively identical.
The question is how we should set the granularity of dif-

ferences used for relative conformity decisions. Is it charac-
ters, words, or paragraphs? It is considerable difference, if
we would compare words with threshold value of two char-
acters and whole paragraphs with the same threshold value.
The simplest solution is setting the number of characters
considered. Another aspect is how “close” are changes situ-
ated in text. Thanks to this aspect, we are able to evaluate
importance of changes. Another heuristic in this sense is
not considering added or removed diacritic marks in text,
eventually not considering case sensitivity.

The objective of change detection on the content level in
an ontology version is to find added, removed and modified
individuals. In so doing, it is also necessary to take into
account changes on the structural level, for example changes
in slot names, classes, or slot additions. One of the most
important objectives is identification of correct mappings of
equivalent individuals between two versions. If we are able
to define these mappings, we can define which slots and how
much have been changed and which data are current.

To identify mappings of individuals between two ontology
versions, we proposed three heuristics. In the following de-
scription of heuristics we use I for individuals, V for versions
and C for classes.

Individuals with the same name
Let two individuals I1 from class C1 and C1 ∈ V1 and I2

from class C2 and C2 ∈ V2 and C1 and C2 are equivalent.
Then I1 and I2 are equivalent, if they have identical names.

This heuristic describes standard situation when searching
for mapping of individuals between two versions. It is not
applicable on anonymous individuals.

Identical values of slots
Let two individuals I1 from class C1 and C1 ∈ V1 and I2

from class C2 and C2 ∈ V2 and C1 and C2 are equivalent.
Then I1 and I2 are equivalent, if they have relative identical
values of slots and the mapping between classes C1 and C2

was detected.
This heuristic is applicable for identification of equivalent

anonymous individuals. But it can happen that classes will
contain not enough equivalent slots to make decision about
individuals similarity. This problem can be partially solved
by defining minimal number of slots, which must be mapped
in classes C1, C2 or minimal number of defined values in
individuals I1, I2.

One nonidentical value of slot
Let two individuals I1 from class C1 and C1 ∈ V1 and I2

from class C2 and C2 ∈ V2 and C1 and C2 are equivalent.
Then I1 and I2 are equivalent, if they have identical values
of slots, except one, and the mapping between classes C1

and C2 exist.
This heuristic is applicable for identification of equivalent

anonymous individuals with exactly one changed slot value.
Like in previous heuristic, it is desirable to define minimal
number of slots, which will be analyzed.

Described heuristics are used for identification of equiv-
alence between individuals. Slots which have discovered a
mapping on the structural level are exposed to additional
analysis, where the differences on the slot level, respectively
their values are identified. The reason is that only for these



slots we are able to acquire values which is reasonable to
compare. The comparison follows the preposition that the
user knows, eventually will see, which data have changed
and what has been changed.

5. RELATIVE TEXT COMPARISON
In order to detect relative equivalence of two literals, we

proposed a method for text differences identification. We
identify the differences that are supposed to be semantically
significant. For the user it means that only “significant”
text changes will be visualized and minor changes like typing
errors will be omitted. Consequently, in new version, such
text will not be declared as different concerning the text
present in old version. Our method works on the level of
characters, words, sentences or the whole text, respectively
on a combination of these levels. We denote a character,
word, sentence or text as text element thereinafter.

The basic principle of the method is to detect whether
two text elements are similar (or relatively identical). De-
tection of the relative identity is based on defined thresh-
old values, which involve the number of detected syntactic
changes, eventually their density.

The process of determination of relative conformity is
based on an initial comparison of text elements using diff

algorithm [5]. Application of this algorithm on two versions
of texts detects a vector of identical elements, a vector of
removed elements from old version and a vector of added
elements in new version. Because in some cases, the diff is
unable to identify a moved element, in such case the moved
elements are detected using the vector of added elements and
the vector of removed elements. This is accomplished using
relative comparisons of element on the lowest level (compar-
ing characters, see Figure 5). For example, in case of moved
sentence, we try to find the sentence by detecting identical
words between two versions. In case of moved word, we look
for words with same characters, etc.

Text

Sentences

Words

Characters

identical/

non identical

identical/

non identical

identical/

non identical

Figure 5: Different levels for text comparison.

In the case of whole text comparison, we decompose text
to individual paragraphs first. This step is not necessary,
but it has an effect on accuracy and efficiency of moved
sentences detection. Text decomposition results in the situ-
ation where we search for sentences only in the paragraph.
Without the text decomposition we would have to search for
sentences in the whole text, what can have great impact on
comparison effectiveness. Consequently the analysis contin-
ues on the sentence level.

During relative comparisons of sentences we analyze words
in the sentence. Individual words between two versions are

compared one by one on the character level and the fre-
quency of changes is logged. In the case of different lengths
of compared texts, the redundant elements in one word are
marked as nonequivalent with corresponding characters in
the other word (because they do not exist here) and fre-
quency of changes is increased by this difference.

Following frequency of differences we estimate whether
particular text unit contains a semantic change or not. Let
us denote this value as similarity decision on the level of
particular unit. Decision is made following defined threshold
values. Threshold values are not generally defined for any
unit lengths, but for zones. Considering words, the zone rep-
resents the scope of word lengths, for which the given thresh-
old value is valid. For example for words shorter than two
characters including, the threshold value should be 100 %
of changed characters (i.e., the words should be identical),
for words shorter than 5 characters including, the threshold
value can be 30 % and so on.

It is desirable to have the choice to identify the thresh-
old values not only as relative quantity, but also as absolute
quantity. Suitable complement for determination of thresh-
old values is creation of profiles for individual types of text.
Using profiles, we can for example achieve that comparisons
on technical texts or law texts would be set as more sensitive
than for example in poetry, where the impact of changes on
meaning is not so important. The presented way of determi-
nation considers with a certain inaccuracy or variance. Here
experimental determination of the zones would be beneficial.

After acquiring particular decisions on comparisons, i.e.
whether individual elements do or do not contain semantic
change, relative conformity is analyzed on higher level with
the same approach.

As an example consider comparison of two versions of the
text containing one sentence on Figure 6. The difference
between the versions is in replacement of the word “Pat” by
the word “Jane”. Moreover in old version there is a misprint
in the word “old”. Comparison of replaced words on the
level of words will result into unmatched words. However,
the words “old” and “olr” are evaluated as similar.

Figure 6: Example of text comparison.

For some languages diacritic marks can have great impact
on the results of comparison. Comparison of identical texts
with and without diacritic marks would lead to determining
texts as different. This problem can be solved using lesser



values for threshold values or by removing diacritic marks
from the text during the comparison.

Presented method works on syntactic level. It can be
extended by incorporating synonymous dictionary and im-
prove the text analysis both on structural and content levels
of ontology changes identification.

6. ONTODIFF SOFTWARE TOOL
In order to validate feasibility of proposed approach, es-

pecially defined heuristics, we developed software tool On-
toDiff [12]. The main objective of OntoDiff was to proto-
type the method for ontology change identification in order
to validate functionality and behavior of heuristics on vari-
ous patterns of ontologies. Our user interface for displaying
changes between two individuals was inspired by the inter-
face that Microsoft Word uses to present changes similarly
as in [8].

OntoDiff allows storing versions of the ontology and iden-
tified changes into the repository (see architecture of the
system on Figure 7). It contains module for version manage-
ment, module for management of changes between versions,
allows using automated or manual identification of changes
on the structural level. The tool visually marks identified
changes. OntoDiff is implemented as web application on
platform J2EE using Struts framework1 and iBatis2. For
manipulation with ontologies we used Jena framework3.

Figure 7: OntoDiff architecture.

Figure 8 illustrates an example of user interface of the
OntoDiff. OntoDiff enables semi-automatic ontology change
identification where the system suggests mappings according
defined heuristics and the user can control the whole process
by manual setting of added, moved or removed elements.

For testing purposes we used three ontologies, each of
them containing 10 to 15 versions with different types of
changes and with various scopes. We used threshold val-
ues obtained by series of experiments for various texts. The
values are set for each level (words, sentences, whole text)
separately. Table 1 gives values of thresholds for zones used
on the level of words.

1Apache Software Foundation: http://struts.apache.org
2Data Mapper Framework: http://www.ibatis.com
3Jena – Semantic Web Framework for Java: http://jena.
sourceforge.net

Zone Threshold [%]
2 characters 51
5 characters 33
10 characters 21

> 10 characters 20

Table 1: Example of threshold values definition.

The system was able to identity smaller and middle large
changes in the ontology with high reliability. These small or
middle large changes have not involved any cardinal move-
ments and renames of whole parts, or brands in class struc-
ture of ontology.

In the cases of ontology version with a lot of concep-
tual changes, successfulness of identification of mappings
between classes was reduced and the OntoDiff was prac-
tically able to identify only classes and slots with identical
names. In these cases, a user should help the system to
identify changes manually. For the OntoDiff it is enough to
find “footings”, i.e., it is necessary to fulfill conditions for
heuristics. After fulfilling these conditions, the system was
able to identify consequent changes, again.

7. CONCLUSIONS
This paper deals with change detection in versions of on-

tologies. The base of our solution resides in using heuris-
tics for searching elements that can be marked as equivalent
(identical or similar) in ontology versions. To make it possi-
ble to detect changes on the level of individuals, change de-
tection on the ontology schema level should be performed.
Main contribution of our work presented here is proposal
of methods for comparison of ontology versions on content
level, along with detecting of equivalence of anonymous in-
dividuals. In eventuality, all of the identified changes can be
used for validity checkup of slot values of individuals, i.e.,
the content which is presented to the user.

Benefit of proposed approach can be seen for example
for development of software agents processing information
within the context of semantic web technologies. The agents
usually support only one version of an ontology. If the agents
would know the mapping between versions, they will be able
to work with another version of the ontology, they were orig-
inally not designed for.

Developed software tool OntoDiff offers good basis for
next development of change identifications on content level
of the ontology. It is aimed for using within corporate mem-
ory maintenance in larger project [1]. It is possible to use it
for building the solution for distribution of changes between
two ontologies or for online identification, which can be used
by other systems. All of that can be used employing popular
technology of web services.

Presumably the most interesting extension of the system
is its extension in the way that it will be more oriented to
end consumer of the content. Such system can store versions
of the ontology in defined time slots. Storing can be manual,
using files with the ontology versions, or automated, when
relevant data are downloaded from the Web. After that
the system analyzes structural and content level changes.
Following the identified changes, it can effectively present
changes as tracked information from particular domain and
mark detected changes to the end user. In conjunction with
adaptive web-based systems this information can be served



Figure 8: Example of OntoDiff screen.

the end user matching his demands and needs in such a
way that only similar individuals of presented ontology are
offered to particular user.

8. ACKNOWLEDGMENTS
This work was partially supported by the Science and

Technology Assistance Agency under the contract No. APVT-
20-007104 and by the Scientific Grant Agency of Slovak Re-
public, grant No. VG1/3102/06.

9. REFERENCES
[1] M. Ciglan, M. Babik, M. Laclavik, I. Budinska, and

L. Hluchy. Corporate memory: A framework for
supporting tools for acquisition, organization and
maintenance of information and knowledge. In
J. Zendulka, editor, Proc. of 9th Int. Conf. on
Information Systems Implementation and Modelling
(ISIM 2006), pages 185–192. MARQ, Ostrava, 2006.

[2] M. Ehrig, P. Haase, M. Hefke, and N. Stojanovic.
Similarity for ontologies - a comprehensive framework.
In Proc. of 13th European Conf. on Inf. Systems, 2005.

[3] D. Fatterly, M. Manase, M. Najork, and J. Wiener.
A large-scale study of the evolution of web pages.
Software—Practice and Experience, 34(2):213–237,
2004.

[4] P. Haase and Y. Sure. State of the art on ontology
evolution, 2004. Available at
www.aifb.uni-karlsruhe.de/WBS/ysu/

publications/SEKT-D3.1.1.b.pdf.

[5] J. Hunt and M. McIlroy. An algorithm for differential
file comparison. Bell Telephone Labs CSTR #41, 1976.
Available at www.cs.dartmouth.edu/~doug/diff.ps.

[6] M. Klein, D. Fensel, Dieter, A. Kiryakov, and
D. Ognyanov. Ontology versioning and change
detection on the web. In 13th Int. Conf. on Knowledge
Engineering and Knowledge Management (EKAW02),
page 197. Springer, LNCS 2473, 2002.

[7] A. Maedche, L. Stojanovic, R. Studer, and R. Volz.
Managing multiple ontologies and ontology evolution
in ontologging. In Y. G. et al., editor, Proc. of the
Conf. on Intelligent Information Processing
(IIP-2002), pages 51–63. Montreal, Canada, 2002.

[8] N. Noy, S. Kunnatur, M. Klein, and M. Musen.
Tracking changes during ontology evolution. In Proc.
of Int. Semantic Web Conference (ISWC 2004), pages
259–273, 2004.

[9] N. Noy and M. A. Musen. Ontology versioning as an
element of an ontology-management framework. IEEE
Intelligent Systems, 2003.

[10] OCLC – Online Computer Library Center. Web
characterization. Available at http://wcp.oclc.org.

[11] P. Plessers and O. D. Troyer. Ontology change
detection using a version log. In ISWC 2005, pages
578–592. Springer, LNCS 3729, 2005.

[12] M. Tury. Identification and management of onology
changes. Master’s thesis, Slovak University of
Technology in Bratislava, 2005.


