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Abstract. Personalization is becoming more important if we want to preserve the
effectiveness of work with information, providing larger and larger amount of the con-
tent. Systems are becoming adaptive by taking into account characteristics of their
users. In this paper we describe our work in the field of automatized user charac-
teristics acquisition based on capturing user behavior and its successive rule-based
analysis. We stress on re-usability aspect by introducing rules used for the analysis
of logs. Resulting user characteristics are stored in an ontology-based user model.

1 Introduction

Many teachers around the world are using information technologies to support the learning
process. A lot of tools and frameworks exist, which allow for creation and publication of study
materials for students online. There exist specifications like LOM or IMS-LD to support
re-usability and interoperability of learning objects. However, learning objects are really re-
usable and of great value for students only if they are integrated in such a way that their
presentation reflects the needs and skills of the students – individual users, i.e., it is adaptive.

E-learning is an ideal domain for adaptation since every student might prefer different
style of learning (e.g., top-down, bottom-up), might have different background and experi-
ence in a topic of e-course. If an educational system is aware of these user characteristics
(represented explicitly in a user model) it can noticeably improve user’s experience with the
system and ease the learning process.

In this paper, we present a rule-based approach to analysis of logs of user activity (user
modeling based on observing user behavior). We focus on aspect of re-usability and inter-
operability of the solution. We explicitly defined logs of user activity and devised a generic
method of its processing according to a given set of rules. The method produces instances
of user characteristics in an ontology-based user model. As a result, it is easy to incorporate
a user modeling feature into existing systems and thus enable personalization.

The paper is structured as follows. In section 2 we describe current trends and problems
in the field of user characteristics acquisition. Next in section 3 we introduce our user model.
Section 4 contains description of proposed rule-based adaptation knowledge representation.
In section 5 we describe a process of user characteristics discovery using proposed rules. We
evaluate our work and describe future work in section 6. Finally, we give conclusions.

2 Related Works

On the top-level, user modeling consists of two stages: data collection and data processing
(analysis) [1]. It is important to recognize that the first stage has a substantial impact on
possibilities of the second stage.

If we consider automatized approaches to data collection, it is popular to use logs pro-
duced by a web server as a basis for the analysis. Web Usage Mining [2] is a special branch
of data mining techniques applied on the web server logs (clustering, classification, associ-
ation rule and sequential patterns mining). These techniques are based on a social aspects,
where the actual user session is mapped to some patterns of a group of users and as a result



they can not be used directly to acquire characteristics of an individual. Still, techniques of
Web Usage Mining can be used effectively to support students in learning process. A good
example can be found in [3].

In the case where the web server log is produced by some specialized tools, it is crucial to
transform the log into usable form [4]. Even if it is done, the log lacks semantics of majority
of user–system interactions (records are based on low-level HTTP protocol). The user model
is then often realized as a simple statistical model expressing whether (and how many times)
a user visited some page. Such a model is very system-dependent and is of no use to other
systems. What we need is to have a model filled by characteristics rather than statistics.

Because of the mentioned problems, many researchers have proposed separate logging
subsystem (often on a client side of the system) which replaces web server log or is used
together with it [5]. However, in a majority of current approaches we are missing explicitness
of the produced log. Semantics of acquired logs is used implicitly in the part of log analysis
which results in tightly coupled modules with limited re-usability. In [6] authors refer to a
Log Ontology but do not provide more details of it.

A re-usable and interoperable user modeling solutions already exist. For instance the
Duine toolkit [7] allows any information system to incorporate recommendation services.
Disadvantage is that the user model produced by Duine is closed, stored in relational data-
base and thus not enough shareable. We found similar problem also in BGP-MS system [8].

3 User Model

Our user model consists of two parts: logs of user actions and ontology-based part used
for actual adaptation. Because collected logs represent huge amount of data, we are taking
advantage of maturity of existing relational databases for the storage. Ontological repre-
sentation of user characteristics allows easy interconnection of several models, sharing and
re-usability of constructed user model.

3.1 Logs of User Actions

Because we consider logs produced by a web server as not sufficient for the estimation of
characteristics of an individual user, we designed and developed a logging sub-system [9]
which is responsible for creation of detailed logs of a user activity. Basic requirement is to
have self-contained records, so we would not need any other additional data to be able to
process and interpret them. The semantics of the action should be expressed in the log itself.
Therefore we log event (as a result of the user action) together with all its attributes as well
as with a description of current display state (description of items and their attributes which
were displayed when the action was performed).

Our next requirement is to have a flexible enough representation of the logs which allows
for uniform storing of records of user interactions from several types of user interfaces.
Simultaneously, we required a representation which can deal flexible with changes of the
adaptive application and its presentation layers.

As a result, we designed a generic data model, whose flexibility was achieved by using a
two layer model:

– meta-layer, which prescribes associations between types of entities. We defined types of
known events, types of their attributes;

– operating layer, which contains specific run-time values.

3.2 Ontology-based model of user characteristics

We use ontology as a mean for representation of user characteristics. It is divided into
domain independent and domain dependent parts [10]. The domain independent part defines
characteristics like age or sex as well as structure of a characteristic. We combine several
ontologies where the domain dependent part is always connected to the appropriate domain
model. In this paper we consider representing the ontology by RDF/OWL formalisms.



In our model used for e-learning domain, we currently use two types of characteristics
(CoursePropertyPreference which informs about a relation of the user to the specific domain
properties and CourseSpecificUserCharacteristic which informs also about values of prop-
erties), derived from a common super-class (gu:UserCharacteristic), which gives common
attributes to all characteristics (see Figure 1). Each characteristic has a time stamp and
a source. For the purpose of adaptation we define a user goal, and the characteristics are
somehow relevant to the user in achieving this goal. Because our method produces estima-
tions of user characteristics, we store a level of confidence for each characteristic. Confidence
informs about quality of the estimation 1.
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Fig. 1. Representation of a user characteristic in used user model.

4 Knowledge on User Characteristics Acquisition

Knowledge on user characteristics acquisition is represented by rules. Each rule consists of
two parts: a pattern and (at least one) consequence (see Figure 2). Knowledge representation
formalism is crucial for devised method of user characteristics acquisition. The rules must be
able to store various types of possibilities which can occur during user-system interaction.

4.1 Pattern

Pre-defined patterns detected in the user activity log form the base of data analysis. A
pattern is on the top-level defined as a sequence of event types and other sub-sequences
(see Figure 2). A pattern is detected when an occurrence of the top-level sequence is found.
Finding occurrence of the sequence means that we are able to map prescribed events to
specific events found in the log of the user activity.

Sequence. A sequence can be of two different types:

– AllRequired - basic sequence type which is detected in the log of user activity if we detect
occurrence of all its events and subsequences (equivalent to logical operation AND);

1 User models constructed using the same approach can be found at nazou.fiit.stuba.sk and
mapekus.fiit.stuba.sk
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Fig. 2. Structure of rules used for estimation of characteristics.

– OneRequired - to detect this kind of a sequence, it is sufficient to detect occurrence of
one of its events or subsequences (equivalent to logical operation OR).

Further, we divide sequences into continuous and discrete. A continuous sequence de-
mands that all of its events must succeed directly one after another. Events of a discrete
sequence can be separated by any count of other events and sequences. A sequence can thus
span through multiple user sessions.

We define following attributes of a sequence:

– Count-of-occurrence - prescribes the required count of the sequence repetition in a pat-
tern. The execution engine will continue to process the next sequence only if this count
was achieved. This attribute can have a special value (negative number) to define a
sequence as optional.

– Context - optional attribute which defines the restrictions on events being mapped to
the current sequence. For example, a context restriction can define types of displayed
items attributes which must stay unchanged for all events mapped to the sequence.

Event. An event represents an elementary part of a pattern. During the pattern detection,
we map the events from log of user activity to events prescribed by the pattern. Each event
has its type which corresponds to the known event type from meta-level of our user actions
model. Each event can have a weight. Weight can be determined by considering various
factors. We can use information such as time to next event to compute the weight or use a
predefined one for a specific type of event.

Similarly to the sequence, an event can also have contextual restrictions. The context of
an event defines restrictions solely on attributes of the event while the context of a sequence
deals with display state.

Each event context condition can be of the following types:

– SameAsPrevious a value of some defined event attribute must be the same as in previous
event of a sequence;

– DifferentThanPrevious a value of some defined event attribute must be different from
the one in previous event of a sequence;



– MinValueOfWeight - this contextual condition requires a weight of an event to be higher
than some defined value. For instance, if an event “show detail” is immediately followed
by a “show overview” event, it will be assigned a low weight not fulfilling defined con-
textual restriction (user did not have time to see the page with detail). Therefore, we
will not map this event into the sequence.

Figure 3 illustrates an example of the pattern representing “result browsing”. We can
consider for example a repository of available e-learning courses on various topics and a
user which is interested in some topic and looks for relevant study materials. When the
user selects some restrictions on the information space, a set of results which fulfills selected
restrictions is returned and the user can browse them to find out more details.
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Fig. 3. Example of a pattern part of the rule “results browsing”.

A pattern is on the top level formed by a discrete sequence of type OneRequired. The
sequence has to be found four times in the log of user action for the pattern to become
detected. The sequence has a contextual restriction which refers to an attribute of displayed
item. All mapped events have to be connected to such a display state, which have for all
displayed items of type “facet” constant value of actually chosen restriction. In other words,
the user is not changing currently chosen restrictions of the information space and is only
browsing in the list of results. Events can be of type PageNext, PagePrevious, PageSelect,
ShowDetails and ShowOverview. Former three types of events represent navigation through
individual pages of results while latter two events, joined in a continuous subsequence,
represent display of details and navigation back to the list of results.

4.2 Consequence

A consequence determines what and how should be changed in the user model in the case
when the instance of a pattern is detected. The consequence consists of unlimited count of



changes of user characteristics (see Figure 2). Each change has an attribute class, which
determines the type of the user characteristic being changed (a class where the instance of a
characteristic belongs to) and several property attributes prescribing changes of the object
and literal properties of an instance being changed. Each property is defined by its URI as
defined in a T-box of the used ontology.

The change can have three different types of properties:

– Used property - a rule defines directly the value which should be used for a property.
– Processed property - contains an instruction how to compute value of given property. It

is used for numerical data-type properties such as confidence or relevance. Basic infor-
mation is whether the existing value will be increased or decreased. Processed property
defines an increment/decrement for one step and boundaries of interval, where the actual
rule can still change the value. Processed property also defines a strategy how to change
the characteristic (e.g., progressively or uniform).

– Referencing property - refers to an event from the pattern part of the rule. A value of
property is actually a value of an attribute of the referenced event.

On the Figure 4 is displayed an example of a consequence part of the rule “result brows-
ing”. The consequence changes instances of the CourseSpecificCharacteristic.
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Fig. 4. Example of a consequence part of the rule “results browsing”.

5 User Characteristics Acquisition Process

We have proposed a method for user log analysis based on adaptation knowledge represented
by above described rule-based mechanism. The analysis process is depicted on Figure 5.
It consists of following steps: pre-processing of the entry, pattern detection, and the user
model update. If a pattern of implicit feedback was detected, we include feedback evaluation
(acquirement of concept rating) and a comparison of rated concepts into the process.

5.1 Data Pre-processing

Thanks to the well defined semantics of data already in the data collection stage and used
representation of collected data we do not need such a complex data-preprocessing as we
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Fig. 5. Overview of a data analysis process.

can see in other solutions which work with logs produced by a web server [4]. This stage
consists of mainly filtering consecutive events of the same type and context, which is often a
result of user’s repeated click on the same item (e.g., because of slow response times of the
system). We also assign weights as described in 4.1 to individual events at this stage.

5.2 Pattern Detection

Pattern detection is a key task in the process of log analysis. Detection works similarly as
it is in standard production systems, it maps an event prescribed by the rule to a specific
event from the log of user actions. Events are mapped to the instances of the rule for a
specific user. Each rule instance holds references to the instances of its sequences to have an
evidence of reached count-of-occurrence for each sequence.

The basic idea of the algorithm is explained in the following pseudo-code:

DetectPattern(Event):
find rule candidates for Event;
for each rule in rule candidates

find applicable rule instances(rule, event);
for each rule instance in applicable rule instances

apply event on rule instance;

findRuleCandidates(Event):
for each rule in known rules

if type of event matches the first event of pattern part of the rule
add rule to candidate rules;

else if exists such rule instance of rule belonging to the current user
that type of expected event match type of upcoming event

add rule to candidate rules;
return candidateRules;

findApplicableRuleInstances(Rule, Event):
for each ruleInstance of rule belonging to current user

checkContextOfCurrentSequence(Event);
checkContinuity(Event);
checkContextOfEvent(Event);
if all checks passed



add ruleInstance to applicableRuleInstances;
return applicableRuleInstances;

apply(Event, ruleInstance):
map Event and expectedEvent of RuleInstance;
update state of ruleInstance; //nextExpectedEvent, count-of-occurrences
if Pattern was detected performConsequence part of the ruleInstance;

5.3 User Model Update

Update of a user model is driven by changes specified in the consequence part of the rule.
It performs these steps for each change:

UMupdate():
retrieveInstanceOfUserCharacteristic(); //which is being changed
for each property in processed properties;

update value according to given strategy;
update timestamp;
update count-of-updates;

retrieveInstanceOfUserCharacteristic():
check value of all referencing properties;
check value of all used properties;
if rule does not allow for change of ‘‘foreign characteristic

check value of source of characteristic;
if no instance fulfills these criteria

create a new instance;
set all referencing and used properties;
set source;

return found or created instance;

5.4 Feedback evaluation and Concept Comparison

In case that a detected pattern represents an implicit feedback, we compute an evaluation of
the concept, which is related to the feedback. This rating is an estimation of the user rating
as if the user would rate the concept explicitly by choosing a level from a given scale.

There are several strategies to evaluate implicit feedback according to type of implicit
feedback [11] and implicit interest indicators [12]. Transformation of an implicit feedback
into numerical value of the user rating separates further processing of the feedback from its
source. This allows replacing the implicit feedback by an explicit one with no impact on its
processing.

Evaluation of the feedback gives us the user ratings of concepts. Our goal is to estimate
user characteristics from these ratings. We aim at finding out which concept attributes and
values were the reason of low (or high) ratings. This can be achieved by comparing concepts
with different and similar ratings. The basic idea is that if the difference of two concepts
in one attribute caused very different ratings we can infer importance of this attribute and
its value. The comparison is a complex process, it needs to employ multiple strategies and
approaches [13]. Another approach which use feedback evaluation to infer user characteristics
is presented in [14].

6 Evaluation and Conclusions

In this paper we presented an approach to user characteristics acquisition. Our approach is
based on rule-based analysis of logs of user actions. We consider the ease of incorporation of
our user modeling subsystem into existing web-based systems architectures as a substantial
advantage. Only requirement is to produce a log of user actions and to prepare a set of
rules for log analysis which can be easily done as shown in [15]. We presented an idea of the
rule mechanism which allows for creation of simple but also (if needed) more complicated



pairs of patterns and consequences. Advantage is that we can use the same mechanism for
navigation patterns as well as for patterns of implicit feedback. Output of our method is
the ontology-based user model filled by estimation of user characteristics. Thanks to chosen
representation these characteristics can be shared among several systems and refined to
better reflect reality.

To evaluate the proposed method of user log analysis we created a software tool LogAna-
lyzer which performs rule-based analysis of collected data – logs of user actions. Similarly as
with design of the method we were focused on re-usability of the tool by separating it from
the rest of the system by well-defined interfaces. It is implemented in Java SE 5.0 which
means that it is platform independent.

LogAnalyzer uses three types of data sources:

– logs of user actions stored in relational database. The tool is separated from the actual
implementation of RDBMS by an O/R mapper Hibernate;

– rules stored in a file using XML based language;
– user model stored as triples in RDF repository. The tool is separated from actual im-

plementation of RDF repository by generic enough interface.

We integrated the tool in portal solutions of two different domains – job offers in
a project NAZOU [16] (nazou.fiit.stuba.sk) and scientific publications in a project
MAPEKUS [17] (mapekus.fiit.stuba.sk). Characteristics retrieved by the LogAnalyzer
tool were used for presentation adaptation. In the first stage of the evaluation process we
focused on finding an execution model of the user characteristic acquisition process. We let
a test user to use the web application and measured execution time of analysis after each
event. On the Figure 6 are depicted average values of execution time from multiple runs of
the test with a set of four or six rules. As can be seen, there is a substantial difference in time
when only instances of rules for individual users were updated and when also the user model
stored in RDF repository was updated (a pattern prescribed by the rule was detected). Be-
cause of very time consuming call of RDF repository, we decided for asynchronous model of
tool execution instead of a pure online mode.
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In the future work we plan to interconnect our user model with other top-level ontology-
based user models [18]. Moreover we work on definition additional adaptation rules based
on general heuristics related to navigation and specific heuristics related to an application
domain and the evaluation of their impact for user characteristics acquisition.

Acknowledgment. This work was partially supported by the Slovak Research and De-
velopment Agency under the contract No. APVT-20-007104 and the State programme of
research and development under the contract No. 1025/04.

References

1. Brusilovsky, P.: Methods and Techniques of Adaptive Hypermedia. User Model. User-Adapt.
Interact. 6(2-3) (1996) 87–129

2. Pierrakos, D., et al.: Web Usage Mining as a Tool for Personalization: A Survey. User Modeling
and User-Adapted Interaction 13(4) (2003) 311–372
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14. Gurský, P., et al.: UPRE: User Preference Based Search System. In: Web Intelligence 2006
(WI’06), ACM (2006) 841–844
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