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Abstract

Existing information retrieval systems provide userswith
limited support for efficient navigation in large semanti-
cally enriched information spaces. Several possible solu-
tions were proposed, such as using faceted metadata search
or semantic clusters of search results. We explore the pos-
sibilities of using enhanced faceted navigation with support
for personalization, collaboration and Semantic Web tech-
nologiesfor (semantic) information retrieval. Furthermore,
we propose the extension of faceted browsers with support
for dynamic facet generation based on an automatically ac-
quired user model, and eval uate the proposed ideas in mul-
tiple domains — scientific publications, digital images and
job offers.

1 Introduction

The present Web along with many web-based resources
comprise a unigue ubiquitous source of information and an
environment for collaboration and interaction of many users
and businesses. While the amount of available information
and the quality and capabilities of information search and
processing tools are growing at an incredible rate, so do the
size and diversity of the Web's user base and the expecta-
tions and requirements of individual users.

Although existing information retrieval (IR) methodsare
continuously improving, they still fail to address the in-
creasing requirements and expectations of many users with
specific needs. For example, most existing search engines
such as Googleor MSN Live Search employ keyword-based
search, while sharing systems such as Flickr or YouTube
might extend this with tag-based search. Theinfamous* ad-
vanced search” interfaces allow users to specify even more
complex (keyword-based) queries, optionally with some ad-
ditional domain specific attributes (e.g., size, filetype for
images). Video search sites such as IMDb and MovielLens

take complexity to another level by offering (multistep) in-
terfaces with many text fields, drop-down menus and multi-
choice listboxes.

However, several studies have repeatedly indicated that
typical search queries are short (up to four words; depend-
ing on the domain) [12] and that advanced search is im-
practical to use for many users [21]. While existing sys-
tems are generally good when searching for very specific
items, they do not support browsing and exploratory tasks
sufficiently [28]. A field study of journaists and news-
paper editors selecting photos for newspaper articles con-
ducted by Markulla and Sormunen reported that “profes-
sional users’ needed to search on multiple categories [16],
yet found an elaborate advanced search interface with about
40 input forms unusable.

The Web is a dynamic open information space as
many “information artefacts’ —documents, articles, images,
videos, music files etc. are continuously added, modified,
removed, rated or tagged. Thus, user diversity and the evo-
lution of information and user characteristics over time play
acrucid rolein effective user-centred IR system design. For
example, people who grew up with the Web and the Inter-
net, i.e. the“Net Generation”, have a natural understanding
of this new ubiquitous environment quite unlike their pre-
decessors [18]. Consequently, they have (radically) new re-
quirements, expectations and modes of operation compared
to the previous generation of web users.

Accordingly, current changes include a shift from tradi-
tional lookup tasks (e.g., fact retrieval) towards more ad-
vanced and open ended learning and investigation tasks
(e.g., knowledge acquisition, comparison, aggregation,
analysis or planning) collectively described as exploratory
search [15]. Furthermore, the trend towards more interac-
tion and active (social) participation encourages the combi-
nation and cross-fertilization of approaches from human-
computer interaction, information retrieval, the Adaptive
Web and the Semantic Web.

In this paper we build upon several existing approaches



and describe an enhanced faceted browser, which is built
around the view-based search paradigm using faceted nav-
igation [11] as suitable means for exploratory search. We
take advantage of Semantic Web technologies (ontologies
in particular) [20] and adaptation based on an automatically
acquired user model to improve usability and reduce infor-
mation overload via personalization [4, 5], ultimately im-
proving overall user experience.

Section 2 describes related work in exploratory search
and faceted browsing. Section 3 outlines our design goals
and provides a high-level overview of our approach, while
section 4 describes the relevance model used to drive our
personalization engine and the corresponding user model-
ing back-end. Next, in sections 5 and 6, we describe the de-
tails of our personalization approach for facets and restric-
tions and for search results respectively. Lastly, we present
our evaluation of the proposed approach in multiple applica-
tion domainsin section 7 and draw conclusionsin section 8.

2 Redated Work

Exploratory search encompasses a broad range of re-
search fields and search and navigation approaches —
keyword-based, content-based and view-based search.

2.1 Keyword-based Search

Keyword-based search is currently successfully used,
e.g., in al maor web search engines (e.g., Google, Live
Search, Yahoo) thanks to its simplicity and ease of use,
while its disadvantages include ambiguity, low expressive-
ness and the lack of guidance and interaction. Typical
search queries are short (one to three words) though their
length varies between domains[13], while advanced search
forms are too complex to be practical [21]. Moreover,
“guessing” the right keywordsis difficult for many users.

The keyword-based 1Group image search engine
presents search results in semantic clusters thus alleviat-
ing some problemswith short, general or ambiguous search
queries[25]. IGroup clustersthe original result set into sev-
eral clusters and provides users with an overview of there-
sult set by means of representative cluster thumbnails and
names, which users can choosefor further navigation. Thus,
|Group improves usability and makes users’ search query
formulation easier by providing both query suggestion and
browsing by textual category labels.

2.2 Content-based Search

Interactive content-based approaches, such as query-by-
example (QBE) have been used in multimedia domains
where textual descriptions of instances are sparse, unavail-
able or inconsistent with user expectations. The current

state of the art in content-based IR and its broader implica-
tions, are surveyed in [14]. Unlike keyword-based search,
content-based IR alows users to search interactively — a
query isaset of positive (or negative) examples of instances
similar to the users’ information need.

TagSphereisan approach to visual presentation of search
results obtained by QBE information retrieval using collab-
orative tagging, originaly developed for the digital image
domain [3]. It stresses usability and user interaction in the
search process by providing different tools for tag visual-
ization, selection, query construction and recommendation.

In [8], the authors describe mental matching — a QBE
based approach that facilitates exploratory search by bridg-
ing the gap between low-level representation of information
in databases (i.e., what metadata are available) and high-
level semantic descriptions meaningful to end users (i.e.,
how they understand and use them). The approach employs
a Bayesian relevance feedback model and allows users to
interactively choose the most similar images out of a set of
sample images — a “visual query”, which the system than
matches against other images in the collection.

2.3 View-based Search

Similarly, view-based search interactively guides users
by showing them with successive views of the respective
information space and showing them the available options
for further query refinement. In practice, view-based search
is most commonly realized in faceted browsers often used,
for example in online shops for product selection. Faceted
browsers allow users to formulate queries via navigation
by successively selecting metadata terms in a set of avail-
able facets, and to interactively browse the corresponding
search results. Authorsin [27] comparethree major faceted
browsers developed in course of research projects aimed at
discovering new possibilities of view-based search — Fla-
menco, mSpace and RelationBrowser.

mSpaceis adomain specific browser of RDF data, which
provides users with a projection of high dimensional infor-
mation spaces into a set of columns (filters) shown in the
GUI, which can be manually added, rearranged or removed
by users [26]. The ordering of individua columnsin the
GUI isimportant as the contents of the next column are dy-
namically determined based on the selection in the previ-
ous column. If, in the music domain, columns TimePeriod,
Composer and MusicPiece are available, then selecting a
time period updates the composer column to only display
composers from that period. Similarly, selecting a com-
poser popul ates the MusicPiece column with hisworks.

Flamenco [28] stresses interface design and guides users
through the information seeking process. Users first see
a high level overview of the available metadata (“open-
ing"), then refine their query and preview results (“middle



game”) and lastly explore individual results via horizontal
navigation (“endgame”). While in Flamenco the facets are
static and predefined, users can manually adapt columnsin
mSpace to match their needs. Both Flamenco and mSpace
support keyword-based search over the entire information
space, however only mSpace supports keyword-based fil-
tering in individual facets. Moreover, neither Flamenco nor
mSpace provide personalization nor user adaptation.

The overall user response to these approaches was pos-
itive — nearly all users preferred them over a baseline ap-
proach/interface. Nevertheless, several of the approaches
suffer from scalability and information overload issues.
E.g., the faceted browser in [28] had an average response
time of 3.7s vs. 0.3s for the baseline approach. Further-
more, neither of these solutions provide personalized fea-
tures based on individual users characteristics. However,
even though some of the aforementioned solutions work
with RDF data, they do not take advantage of semantic
markup for user interface generation and/or personalization
in open information spaces.

The BrowseRDF faceted browser [19] supports auto-
matic facet generation from arbitrary RDF data and extends
the expressiveness of faceted browsing by extending typi-
cal faceted queries with RDF semantics, e.g. with existen-
tial selection, inverse selection, non-existential selection. It
identifies facets in source data based on several statistical
measures — predicate balance, object cardinality and predi-
cate frequency, yet does not directly addressissues of infor-
mation overload or interface usability and adaptivity.

Thefaceted browser called /facet [10] isintended for het-
erogeneous information spaces consisting of distributed se-
mantic repositories represented in RDFS. It takes advantage
of the rdfs:subClassOf and rdfs: subPropertyOf properties
in order to process facet restriction hierarchies. Further-
more, /facet supports multi-type queries and runtime facet
specification thus greatly increasing flexibility and support
for heterogeneous repositories. The multi-type capability
effectively trandates into an additional facet, which is used
to specify the target data type. Based on the selection in the
type facet, other facets are made available.

Moreover, /facet supports keyword-based search, which
allows usersto perform keyword-based search on both data
(instances) and metadata (facets and restrictions). Lastly,
/facet supports the grouping of search results based on indi-
vidual properties and timeline visualization of dates. How-
ever, it does not support personalization nor advanced link
generation and recommendation techniques.

Even though the described approaches present progress
in improving search mechanisms, there is still much space
left in the sense of combining different approachestogether
and adapting the resulting approach to individual users
needs ultimately changing the way we search for informa
tion in the new [social adaptive semantic] Web.

3 Personalized Faceted Navigation Overview

We propose a method for personalized faceted naviga
tion using an enhanced faceted browser, which takes advan-
tage of Semantic Web techniquesfor ontological knowledge
representation, and Adaptive Web techniques for personal-
ized facet and search results recommendation.

Our primary design goals were:

e Information overload prevention by recommending
relevant content while hiding less relevant content
(e.q., facets, restrictions, result attributes).

e Guidance support via navigational shortcuts, which
streamline navigation in deep/complex faceted hierar-
chies (e.g., restriction recommendation).

e Orientation support by showing additiona informa-
tion/cues simplifying user decisions about further nav-
igation (e.g., tooltips showing future facet contents).

e Improved response times due to selective processing
of facets and restrictions, since advanced (semantic)
approaches proved to be “time consuming”.

e Universality and flexibility — suitability to dif-
ferent/changing application domains facilitated by
(semi)automatic user interface generation.

In order to achieve the aforementioned goals, we take
advantage of ontological data representationin OWL:

e The domain ontology describes domain concepts, the
relations between them and their attributes. It con-
tains metadata that describethe structure of the domain
model (i.e., classes and properties) as well as actual
domain data (i.e., instances). For example, in the sci-
entific publications domain, it describes authors, pub-
lications and venues.

e The user ontology describes the characteristics and
preferences of users as well as their broader context —
the time, location and properties of the device and net-
work they use. Since we address generic browsing in
large information spaces, we focus on individual user
characteristics and omit the issues of acquiring and us-
ing a broader user context, which would be required,
e.g., for mobile applications.

e The event ontology describes the events that occur in
the faceted browser and its states during user interac-
tion so that they can be used for the subsequent auto-
mated user characteristics acquisition.

The enhanced faceted semantic browser extends the typ-
ical request handling of faceted browsers with additional
steps that perform specific tasks (see Figure 1).
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Figure 1. Request handling of the enhanced faceted browser, extensions shown in gray.

Facet processing is extended with facet recommendation
— active facet selection, facet and restriction ordering and
annotation, which improve orientation and guidance sup-
port, reduce information overload and aleviate some disad-
vantages of faceted classification (Figure 1, bottom left). If
the set of available facetsisinsufficient (e.g., the refinement
options were exhausted), we use dynamic facet generation
to add new facets at run-time on a per user basis thus allow-
ing the user to further refine the search query.

Search result recommendation extends the processing of
search results with support for personalized result ordering,
annotation and view adaptation (Figure 1, right). We em-
ploy external tools that evaluate the relevance of individual
search results, e.g., by means of concept comparison with
the user model [2] or via the evaluation of (explicit) user
feedback [9]. Subsequently, we reorder the search results
or annotate them with additional information. We aso gen-
erate adaptive views, which show only selected search result
attributes to prevent information overload.

To facilitate automatic user model acquisition, which is
crucia for our personalization approach, we take advan-

tage of the personalized presentation layer describedin [22].
We log events that occurred as results of user interaction
with the browser and the current state of the browser via
a specialized external logging service which preserves the
semantics of events [1] (Figure 1, bottom right). The ac-
quired events are processed by the user modeling back-end
and and in turn retrieved as an updated relevance model,
which drives our personalization engine (Figure 1, top left).

4 Mode for Relevance Evaluation

Figure 2 shows our user modeling and personalization
loop. Our personalization enginelogs user actions and their
semantics explicitly as opposed to traditional web server
logs, which store them only implicitly in request URLs
(Figure 2, top). Each logged event uses our event ontology
to specify the semantics of the respective user action and
al so references the domain and user ontologies as required.

Since the detailed description of the event ontology and
logging approach are beyond the scope of this paper, we
give only asimplified example. If auser selects New York
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Figure 2. Overview of our user modeling-
personalization loop (in gray) and the used
sources of adaptation (in-session behaviour,
short/long term user preferences and global
usage statistics).

in a location facet, we log the event d:SelectRestriction,
whose attributes are dl:Facet and d:Restriction describ-
ing the respective URIs of the used facet and restriction —
r:Facet_location and r: NewYork.

The user modeling back-end provides us with several
sources of adaptation, which we employ with different
weights depending on how closely related they are to the
current user task (Figure 2, bottom):

e In-session user behavior — user navigation, facet and
restriction selection during the current user session
(i.e., user clicks). Frequent use of specific items in-
dicates higher relevance to the current task and/or user
interest in the corresponding domain concepts. For ex-
ample, if ConferencePaper is selected as the publica-
tion type, showing user interest, additional facets asso-
ciated with the domain concept Conference are likely
to be generated in order to alow the user to further
refine her query.

e Short/long term user model — user characteristics ac-
quired during multiple sessions described by their rele-
vance to the user and the confidencein their estimation
in the range (0, 1). High relevance in the user model
denotes good choices for facet generation and restric-

tion recommendation, while high confidence resultsin
high weights when considering the user’s needs.

e Similar/related user models are assumed to belong to
userswith similar needsand arethusused for relevance
evaluationif user specific dataisunavailableor haslow
confidence. Socia user context can be exploited by
assigning custom wei ghts to specific relations between
usersresultingin socia recommendation. Moreover, if
usage data about other users are “publicly” available,
users might directly browse the trails of their peers
(e.g., see what images their friends viewed or what pa-
pers their colleagues downloaded).

e Global usage statistics computed from the overall rel-
evance and usage of individual domain concepts (e.g.,
facets, restrictions, target objects— be it images, publi-
cations or job offers) from al user models. The over-
al “popularity” of facets and restrictions increases the
likelihood of their recommendation for a specific user,
especially if his or her specific preferences are un-
known or have low confidence.

Let Ly (X) = relevancey (X) be the local relevance
of concept X from the domain ontology for user U. For
example, X might be a facet, a restriction, a search result
or a property. We define Cy (X) as the cross relevance of
X determined asthe average local relevancefor all users V
weighted by their similarity sim (U, V') to user U (1), and
G (X) astheglobal relevance of X defined asits mean local
relevancefor all users (2).

> (sim(U, V) Ly (X))

C X) = Veusers ,U 174 1
o (X) 1+ Y sim(U,V) S
Vcusers
Z Ly (X)
G (X) _ Vcusers (2)

|users|

To evaluate the user similarity sim (U, V) € (0,1) we
employ external concept comparison tools [2]. Alterna
tively, similarity can be evaluated viathe sum of square dif-
ferencesin concept rel evance between users (3).

Z (Lv (X) — Lv (X))*
X Econcepts
|concepts| @

sim(U,V)=1-

We define Ty (X)) asthe temporary in-session relevance
of concept X determined as the percentage of user clickson
concept X from the total number of clicks on that concept
type—e.g., afacet or arestriction (4).



Stetic relevance Sy (X) defines the relevance of concept
X based on the user model and the respective confidencein
the relevance estimation (5). Dynamic relevance D (X)
defines the total relevance of concept X based on the user
model and the current in-session user behavior (6).

_ Clicks (X)
Ty (X) = 1+ TotalClicks @
Sv (X) = Ly (X) * confidencey (X) + .
(Cu (X) + Gy (X)) * (1 — confidencey (X)) ®)
DU(X):SU(X)+TU(X) (6)

As an alternative and/or additiAon to cross relevance, we
use weighted social relevance Cy (X) if socia network
datafor a specific relation rel (U, V') are available (7).

> (w (rel) x Ly (X))
A rel(U,V)€relations

Cu (X) = |rel (U, V)|

(7

5 Facet Recommendation

Facet recommendati on distingui shesthree types of facets
adapted at run-timeto the specific needs of individual users:

o Activefacets are fully accessible facets (also known as
primary facets), which can be used for faceted query
construction, and whose content (i.e., restrictions) is
visible and entirely processed (e.g., annotated).

e Inactive facets are partially accessible facets (also
known as secondary facets), which are used in faceted
queriesif they have active selections. While their con-
tent is not directly visible and thus left unprocessed,
they can be activated automatically or per user request.

e Disabled facets are partially accessible facets, which
are only available after al active/inactive facets were
exhausted or on specific user demand. They are not
used in queries and their content is not visible.

5.1 Facet and Restriction Personalization

The adaptation process first determines the relevance of
individual facets and restrictions in our relevance model
(see section 4) and then uses it in these steps:

1. Active facet selection — the total number of active
facets is reduced to a relatively low number, eg. 2
or 3 facets, since many facets are potentially available

in complex information spaces. Active facets are se-
lected based on relevance and on recency and number
of accesses —the most relevant facets or recently/often
accessed facets are likely to be active. The rest of the
facetsis madeinactive or left in disabled state.

2. Facet and restriction ordering — all facets are ordered
in three groups (i.e., active, inactive, disabled) in de-
scending order based on their relevance with the last
used facet always being at the top. Restrictions are or-
dered alphabetically, since aternative orderings based
on relevance or the number of matching search results
were not well accepted by users as they made it diffi-
cult to search for specific items.

3. Facet and restriction annotation — active facet re-
gtrictions are annotated with the number of match-
ing instances, the relative number of matching in-
stances by means of font sizeltype, or directly rec-
ommended (e.g., with background color or the “traf-
fic lights” metaphor) effectively providing shortcuts
to deeply nested restrictions. Additional tooltips can
describe individual facet/restriction meanings (e.g.,
the rdfs.comment annotation in ontol ogies), annotated
child restrictions with relevance, or (personalized) an-
notations generated by external tools[17].

5.2 Dynamic Facet Generation

Normally, facet generationis only triggered when the set
of available facets is exhausted, i.e. when no or very few
activelinactive facets are available.

During facet generation we examine the attributes of tar-
get instances as defined in the domain ontology. For exam-
plefor images, we examine attributes of the domain concept
Image and its associate concepts (via properties), e.g., Lo-
cation denoting the place where the image was taken.

We search for eligible candidate properties of individ-
ual instance types, which can be used for facet construction
based on low-level metadata facet templates used for au-
tomated facet construction from the domain ontology (we
manually used these templatesto createtheinitial user inter-
face). For example in the publication domain, a class hier-
archy facet for the property rdf:typeis constructed from the
rdfs: subClassOf class hierarchy rooted at pub: Publication.

Since it is not desirable to generate al possible facets
due to the their large number, we evaluate the aggregate
suitability of individual attributes based on the aforemen-
tioned relevance model (see section 4). Lastly, we deter-
mine a suitabl e presentation method for each new facet and
forward the resulting set of new facetsto the following facet
personalization stage. Figure 3illustrates the proposed facet
presentation methods:



o Simplefacets—top-level facets based on direct or indi-
rect attributes of target instances, e.g. directly for im-
ages—the object, keywords or location, or indirectly —
the resolution of the camera used to take the photo.

o Nested facets — facets that in addition to (or instead
of) aset of individual restrictions contain a set of child
facets, e.g., afacet that contains facets for the type of
place, popularity and climate of the location where a

photo was taken.
Direct le_loed 1010
andscape
Facet Portrait (2570)
Nested Facet® Location

. Typical climate in mid -latitudes

Climate | ith four seasons annually.
Temperate{ precipitation develops along
Tropical (17] cold and warm fronts as rain,

Nested Facet'

Nested Facet?

Season  LSnow or hail.

Nested Facet?

Winter (872)
Summer (3609)

Camera resolution
Large (>10MP) (427)
Small (<2MP) (335)

Indirect
Facet

Figure 3. Facet presentation methods (left)
and adaptation examples (right). Bold text
is used for recommendation, tooltips and in-
stance counts for annotation.

Direct attributes of target instances are presented via
simple (direct) facets. If only oneindirect attribute of an as-
sociated instance type is presented a simple (indirect) facet
isused. If multiple indirect attributes of the same type are
presented a nested facet can be used so that each nesting
level correspondsto one level of attribute indirection.

6 Search Result Recommendation

Based on the computed relevance and the results of ex-
ternal tools, we perform these recommendation steps:

1. Searchresult ordering — we support simple results or-
dering — unordered results or ordered based on a sin-
gle attribute (e.g., date). Additionally, we employ ex-
ternal ordering (relevance evaluation) tools, which ei-
ther evaluate relevance based on common global pref-
erences, or on personalized ratings constructed from
explicit user feedback (i.e., rating of instances) [9].
Furthermore, we employ external similarity evaluation
tools, which enable users to search for instances simi-
lar to agiven search result [17].

2. Search result annotation — individual search result at-
tributes are annotated similarly to facets and restric-
tions. Tooltips show their meanings (rdfs:comment)
or their properties from the domain ontology. Alter-
natively, external annotation tools are used to provide
custom (personalized) annotations generated from the
domain and user ontologies [17]. For example, in
the movie domain, we can display the suitability of a
movie, based on its estimated relevance to the user’'s
preferences, as background color or via emoticons.

3. View adaptation —we support several adaptive views—
simple overview, extended overview, thumbnail matrix
or detailed view, which display increasingly more de-
tailed information about individual search results (on-
tology instances). The attributes of the displayed in-
stances are adaptively chosen and ordered based on
their estimated relevance derived from the user model.
Moreover, the faceted browser can show instances of
different types so that the user can seamlessly switch
from browsing/searching for e.g., images to videos,
then to actors and back to images.

7 Evaluation
7.1 Architecture and Implementation

For evaluation, we developed Factic — a prototype of
our enhanced faceted browser [24], which implements se-
lected parts of the proposed navigation method based on the
faceted browser processing pipeline described in section 3.
The overall architecture of our solution is based on the inte-
gration and cooperation of several loosely coupled compo-
nents — software tools, as defined by the personalized pre-
sentation layer architecture [22]. We used Apache Cocoon
(cocoon.apache. org) as the underlying portal frame-
work, which is based on the pipelines architectural pat-
tern, and thus allowed us to construct different XML based
pipelines to handle our request processing and XML/XSL
transformations.

Factic is divided into two relatively independent parts
each facilitating the presentation of information and adapta-
tion of the GUI respectively (Figure 4, top left). The adap-
tation part of Factic performsfaceted queries and relevance
model updates with the successive adaptation of facets and
views, while the presentation part transformsits XML out-
put via XSLT into the final XHTML rendered on the client
web browser.

Since Factic relies heavily on user characteristics stored
in the user model, it forwards events with semantics oc-
curring during user interaction to the user modelling back-
end consisting of componentsfor server-sideand client-side
user behaviour evidence acquisition and user characteristics



evaluation (Figure 4, centre). In our solution, these cor-
respond to tools the SemanticLog, Click and LogAnalyzer
respectively [1]. In order to further enhance the function-
aity offered to end users, Factic also takes advantage of
several external information retrieval (CriteriaSearch), rel-
evance eva uation (UpreA/TopK), annotation (Pannda) and
concept comparison (ConCom) agents from the application
layer of our solution (Figure 4, lower centre) [9, 2, 17].
Lastly, the aforementioned components all work over
common knowledge repositories comprised of the domain
ontology, user ontology and event ontology corresponding
to the domain model, user model and event logs respec-
tively (Figure 4, bottom). We store the populated domain
and user ontologies in the Sesame ontologica repository
(openrdf . org) for easy accessviaontological query lan-
guages, and the event logs in arelational database for quick
incremental stream processing of incoming events. Dur-
ing evaluation, we identified several scalability issues with
the ontological repository, which forced us to perform ad-
ditional optimizations (e.g., caching, query tuning) though
satisfactory response times were still difficult to achieve.

7.2 Examples and Domains

We applied our approach to three different ap-
plication domains — online job offers (project NA-
ZOU[17],nazou.fiit.stuba. sk), scientific publica
tions (project MAPEKUS, mapekus . fiit.stuba. gk)
and digital images.

For each domain, we have constructed both a domain
and a user ontology describing the main domain concepts
and their properties. The job offer ontology had the most
complex schema consisting of some 740 classes with hier-
archical classifications up to 6 levels deep. The publication
ontology was of medium complexity with only one hier-
archical classification (the ACM classification), while the
digital image ontology had arelatively smple flat schema.

We populated the ontologies with instance data of
different sizes acquired from publicly available web re-
sources (e.g., careerbuilder.com, eurojobs.com,
profesia.sk, DBLP Springer and ACM DL). We
worked with manually/semi-automatically created “toy-
size’ datasets having 100s-1000s of instances to auto-
matically acquired, large integrated datasets in excess of
100,000s of instances and several times that many triples.

To demonstrate the flexibility and relative domain inde-
pendence of our approach, we configured Factic for use in
individual application domains (i.e., for their domain and
user ontologies). We build upon existing successful faceted
browser interface concepts and adaptive hypermedia inter-
faces. Figure 5 shows the sample GUI of our adaptive
faceted browser in the digital image domain employing the
general faceted browser layout (facets on the left, query at

the top, search results in the centre, optional manual search
result customization, e.g. sorting, above search results).
Our enhanced faceted browser offers a combined searching
and browsing interface, and is suited for effective viewing
of and navigating in large open information spaces repre-
sented by an OWL ontology. It can also be used as an in-
formation retrieval tool where the search query is visualy
created via navigation — the selection of restrictions in the
set of available facets, which are dynamically adapted to
users needs. We also provide users with advanced brows-
ing, searching and visualization features as described bel ow.

I nformation overload prevention. We adaptively reduce
the number of accessible items so that users can efficiently
focus on the most relevant facets and restrictions without
having to scroll several screens down. If users seek images,
only facets for the creation date, object and tags would be
displayed while others concerning image size and acquisi-
tion data would be available on demand (Figure 5, | eft).

Orientation and guidance support. We provide visual
cues recommending further navigation — the number of in-
stances matching restrictions, and textual descriptions of
their meanings. Background color indicates restriction
recommendation for navigational shortcuts, while “traffic
lights” denote their relation to the users' fields of interest
(Figure 5, left). Individual search results show additional
attributes along with average user ratings (Figure 5, centre).

Query refinement.  If the available set of facets becomes
exhausted, additional facets created via dynamic facet gen-
eration allow users to refine their queries beyond what
would have been possible with statically defined facets.

Social navigation and collaboration. Collaboration and
social networks are considered via Global relevance, which
describes the overall “popularity” of concepts (i.e., what
others think is good) while cross relevance also considers
similarity and/or relations between users. We can aso de-
fine additional facets based on social network data (e.g., re-
lation types) alowing users to browse their peers “trails’
directly. Hence, users might access facets, which select only
content, e.g., created, viewed, tagged or rated by their peers.

7.3 Experiments and Discussion

In total, we performed several different sets of experi-
ments to validate our approach. We present some of the
experimental resultsin the job offers domain, where our ap-
proach proved to be particularly suitable, sinceit is avery
complex information spaces with several deep hierarchical
classifications (e.g., regions or positions) and intricate con-
cept relations. We experimented with different adaptation,
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Figure 4. The architecture of our personalized presentation layer.

annotation and recommendation modes. Figure 6 illustrates
thetime and number of user clicks, which represent thetotal
user effort that was necessary to compl ete a given scenario,
i.e. tofind a set of job offer instances.

Our evauation showed that adaptive selection of active
facets can significantly reduce total processing time which
depends roughly linearly on the number of displayed facets
(assuming an average branching). However, the number of
clicksincreased since theright facets were not always active
and thus had to be manually enabled. This resultsin shorter
refresh times and consequently shorter total task times.

Recommendation of suitable ontological concepts based
on the user model further improved total task time and also
decreased the number of necessary clicks due to the effec-
tive creation of navigational shortcuts that allowed users to
skip several clicks by directly recommending suitable re-
strictionswithin arestriction hierarchy. Asbefore, the num-
ber of clicks increased as the number of active facets de-
creased as more facets had to be manually activated.

We encountered one significant bottleneck that seri-

Number of clicks

11 facets

3 facets
Number of active facets

1facet 2 facets

@ Clicks with recommendation E3Clicks with adaptation @ Clicks without adaptation

=@=Time with recommendation =f&=Time with adaptation =@-Time without adaptation

Time [s]

Figure 6. Experimental results for different
adaptation modes — non-adaptive, with adap-
tation, with recommendation, for different
numbers of simultaneously active facets.
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Figure 5. Example GUI of our enhanced faceted browser Factic in the digital image domain.

ously limits widespread deployment of Semantic Web ap-
plications — the immaturity of ontological repositories (we
used Sesame) in terms of their query processing speed,
and query language deficiencies that had to be emulated
(missing aggregation and ordering operators in SeRQL).
While SPARQL addresses some problems, the one most
crucial aggregate operator — COUNT () is still unavailable
(or MINCOUNT () dueto the open world assumption).

Furthermore, effective evaluation of Semantic Web ap-
proachesis still somewhat difficult since few “good” —rich,
complex and large enough ontological datasets are avail-
able, while the bad scaling of ontological repositories puts
strong bias on every real-world usability study. Our larger
datasets yielded only limited results due to their “quality”
— their effective use would require extensive preprocess-
ing, which can be only partially achieved by automated
means[7].

8 Conclusions

We presented a novel method of personalized faceted
navigation in semantically enriched information spaces us-
ing dynamic facet generation with successive facet recom-
mendation as an enhancement for generic faceted browsers.
Our approach is suitable for open information spaces as it
not very susceptible to changes which are a distinguishing
characteristic of open information spaces.

The main advantages of our approach are:

e thevisual construction of semantic queriesvianaviga
tion aided by personalized recommendation of brows-
ing in afaceted browser,

e the improved user experience due to decreased infor-
mation overload and navigation guidance and orien-
tation support in large information spaces,



¢ the flexible (semi)automatic interface generation and
dynamic facet generation based on semantic metadata
from the domain and user ontologies.

We dready see several promising direction of future re-
search, which are likely to further improve overall user ex-
perience. Visual presentation methods for facets, search
result overviews and details are likely to improve the un-
derstandability of the domain and the available data. Vi-
sual navigation in clusters might provide users with the
necessary “global” overview of the respective information
subspace selected in a faceted browser, while incremen-
tal horizontal navigation might be used for details brows-
ing [23]. Likewise, the integration of novel social and col-
laborative approaches as well as the inclusion of mobile ap-
plication considerations has potential to improve navigation
efficiency and ubiquitous deployment. Lastly, the design of
optimized graphical user interfaces from the HCI perspec-
tive with the corresponding usability studies would be of
great interest for practical applications.
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