
An Approach to Annotation of Learning Texts on Programming

within a Web-Based Educational System

Vladimı́r Mihál and Mária Bieliková

Institution of Informatics and Software Engineering

Faculty of Informatics and Information Technologies, Slovak University of Technology

Ilkovičova 3, 842 16 Bratislava, Slovakia

Email: {xmihalv, maria.bielikova}@stuba.sk

Abstract—Many approaches have been developed to sim-
plify user navigation and information search in large in-
formation spaces. Annotations, i.e. notes, comments, expla-
nations or other types of remarks bring to these activities
new dimension. Annotations enrich the content and also
support collaboration. This paper presents a method for
annotation learning materials on programming. Learning
materials in domain of programming consist of text mixed
with programming exercises and code samples. The main
idea of the annotation is an extension of learning materials
by additional information helping students to understand
learning subject easier and faster together with minimizing a
need of finding supplemental information in external sources
such as reference guides. Additionally, user annotations
provide a context based communication space for students
and their teacher: students add annotations into the learning
text to ask, suggest or comment and the teacher evaluates the
annotations and responds. To verify value of this approach we
tested proposed method for annotation learning texts within
an existing learning system in domain of functional and logic
programming.

Keywords-learning text annotation; automatic annotation;
generic annotation; context annotation; learning program-
ming;

I. INTRODUCTION

The Web provides a large-scale environment for in-

formation exchange. As the Web is nowadays available

to practically everyone and everywhere, it is suitable

and currently widely used for educational purposes. With

increasing flexibility and variety of the Web content,

educational use of the Web evolved from publishing of

static learning texts into a usage of interactive personalized

web-based systems, which support learning, advice and

examination of students.

Due to mentioned changes, the quantity of information

available to every student dramatically increased, making

knowledge organizing and finding one certain information

much more difficult. Possibilities of content navigation,

search and presentation increased too. Many approaches

have been developed to simplify user navigation within

large information spaces and information search, often

based on semantics [1]. We have chosen learning text

annotation as an approach, which further improves current

state of the art by providing additional context based

information related to the annotated text (be it a keyword

or phrase) to students, and exact fast content related

feedback to teachers.

We present a method for educational texts annotation.

We consequently evaluate, whether annotations provide

a student additional benefits and simplify the learning

process. Proposed approach is applicable in various do-

mains; however, we specifically designed some features

considering the domain of learning programming, which

served also for an evaluation of proposed approach.

One of the most common problems within the learn-

ing programming is understanding particular elements of

program code and the ability to generalize patterns from

existing code on one side, and specialize existing patterns

to the specific solutions on the other side. A student,

especially one who is not familiar with the syntax of

particular programming language or API used in the

presented sample code usually has to consult a reference

guide or appropriate supporting documents every time

when reading a sample. Modern integrated development

environments (IDE) provide several ways to view API

documentation or other description of used programming

language constructs, e.g., a method, procedure or other

element of code, for instance by a tool tip or by separate

help window or frame.

The most important advantage of in-text help (or expla-

nation) over separately located documentation is absence

of distraction caused by drawing attention away from the

main task of the student. Placing in-text help into learning

texts (and programming code samples in our case) helps

to keep related pieces of information together allowing an

educational system to be more context based instead of

a hierarchy (chapter, section) based. Of course traditional

course structure is also useful and should be available in

the educational system.

Another significant aspect of text annotation is com-

munication aspect. If we allow the students to insert

their questions or suggestions as annotations, they spread

over the learning text and would grow into context based

discussion. It also leads to grouping of information within

the same context to one place, for instance questions are

answered exactly where they have risen. Students can also

be guided through the course by annotations towards rec-

ommended content by adaptive link annotation [2], where

links are augmented with personalized hints informing the

student about the current state of learning objects behind

the annotated links.

The paper is structured as follows. In Section 2 we

describe related work based on examples of currently

available systems for the annotation. In Section 3 we

discuss principles of document annotation in general. Sec-

tion 4 describes our approach to learning texts annotation,

specifies documents we aim our work at. In Section 5

we present an evaluation of proposed method – developed

prototype of the learning text annotator and the experiment

we performed. Section 6 concludes our paper with the

summary of our work and presents ideas for further work.

II. RELATED WORK

The meaning of document annotation varies in current

annotation related research. Basically by annotations we

mean notes, comments, explanations, or other types of

remarks that are attached to presented document (e.g.,

web page or an educational text). This means that we

deal in this paper the content annotation. In fact many

existing web-based systems support the annotation in

various simple forms such as highlighting or underlining

parts of the text or associating free comments with parts

of the text. This techniques are successfully employed in

adaptive web-based systems for the years [3].

One viewpoint on the content annotation is employ-

ing semantics. This approach considers the annotation as

a task aimed at mapping annotations to the text based on

its semantics [4]. The process of semantic annotation can

be automatic, semi-automatic or manual. In the automatic

semantic annotation process we map metadata into the text

document automatically based on discovered semantics.

For example, the annotation part of the KIM project [5]

is looking for named entities (e.g., people, organization,

location names) and links them to their semantic descrip-

tions.

One example of the manual semantic annotation sys-

tems is Ontology-Based Information Extraction Manual

semantic annotation (a part of GATE, General Architecture

for Text Engineering platform, http://gate.ac.uk/). Its main

purpose is a support of manual information extraction

from text data. A user manually marks words from

a document and then selects appropriate classes from the

opened ontology for each selected word (e.g., “day of

week” class for word “Friday”). Semantically annotated

document is further automatically processed considering

added semantics.

An example of automated semantic annotation is Pan-

nda software tool [6]. It online annotates any web doc-

ument in real time – during its accessing. Pannda finds

instances of concepts from given ontology in the text

presented on the web page being annotated. Then enriches

it with information related to instances found. Server side

of the system gets the URL of the web page from the client

application, downloads and processes the document, and

finally sends the annotation data to the client. On the client

side requested web page (which was regularly downloaded

by the web browser) is combined with prepared annotation

data. This approach assumes existence of well prepared

domain ontologies. Moreover, the author does not consider

a problem of possible overloading annotations as often

seeing all the annotation can be confusing.

Another approach to automatic annotation called On-

Tea focuses on text processing using regular expressions

patterns and detecting concepts according to the domain

ontology [7]. However, this method of information extrac-

tion is suitable only if the set of concepts to detect is well

known.

Entirely different approach to the annotation is the

content enrichment by users. Several systems for user web-

page annotation already exist. For instance the Co-ment

annotation system (http://www.co-ment.net/) provides an

annotation of any given text (there are some texts for

testing on the project homepage) by any user. Visitors

can also react (or reply) to existing annotations by other

annotations.

Considering e-learning domain interesting approach is

linking Wikipedia’s text to the structural knowledge that

provides summary information [8]. It moves further se-

mantic annotation using NLP techniques for basic seman-

tic tagging followed by a mapping the found tags and

DBpedia collections (http://www.dbpedia.org).

Most current annotation systems are realized either as

automatic annotating engines for text documents or for

the user commenting only. We believe that automatic

content annotation approach combined with user anno-

tations and interactions with annotations inserted already

would be versatile as well as attractive to students. The

impact of the shared document annotation in collaborative

learning was already proved as positive. The authors in

[9] report observed higher learning outcomes and better

performance. However, a kind of annotations filtering is

necessary in order to lower information overhead when

many annotations are going to be presented.

III. BASIC PRINCIPLES OF ANNOTATION PROCESS

In general, annotation is a process of document enrich-

ment with additional information especially in form of

notes or comments. This information has to be created

or collected, stored and then inserted back in some form

into the document to be presented to the user. Most sig-

nificant part of the annotation is choosing right enriching

information to insert and finding appropriate place in the

document for it. From this point of view we recognize two

ways of the annotation: automatic annotation and manual

user created annotation.

Annotation process generally works in read—retrieve—

insert cycle for each document or its part:

1) Read: preprocessing, analyzing content of the doc-

ument.

2) Retrieve: selecting appropriate annotation for the

document.

3) Insert: inserting annotations into determined places

in the document.

The automatic annotation processes documents entirely

without a human interaction. Information for annotations

is inferred obviously using a repository of annotations.

Therefore it requires the base of additional information

already present (created manually or automatically).

In manual annotation major parts of all three steps of

the annotation are performed by a user. The user

∙ reads the document,

∙ decides what information to insert and

∙ which part of the document to annotate.

Inserted annotations are in the manual annotation pro-

cess often specific to the annotated document and not

applicable to other documents.

Considering generality of annotations we distinguish

two types of annotations:

∙ Generic annotations: annotations used to explain

domain related terms.

∙ Context annotations: annotations strongly related to

the document and certain place within the document.

Main purpose of a generic annotation is to explain

a meaning of particular concept. In our case the annotation

is linked for example the programming language con-

struction. It carries explaining information for given term.

Generic annotation is identified by a concept (keyword,

token or ontology concept), which is explained or further

elaborated in the annotation. Generic annotation always

belongs to certain knowledge domain. This type of anno-

tation is used anywhere, where it is possible or suitable

according to topic of the document and user preferences

(like IDE documentation tool-tip).

Context annotation is a document specific annotation

associated to the particular document and particular po-

sition within it (where it is initially placed). Example of

such annotation is a student question about certain line

of programming code sample. Since context annotations

are usually in their fixed positions within the document

problems may emerge when the document is radically

changed, e.g., annotated part of document is completely

removed.

Context of inserted annotations can become not appro-

priate to the modified document and those annotations can

become unusable or misleading. One way to solve this

problem is to give users an ability to mark annotations as

wrong or not appropriate and to check retrieved context

annotations for the document whether they are applicable

to current version of document and consequently remove

wrong annotations from the repository.

It is possible to use document annotation with any kind

of document including text, pictures, videos or sound.

When creating annotations (semi)automatically we focus

on text documents represented as HTML files, since this

are the most common document formats for learning texts

found on the Web.

IV. METHOD OF ANNOTATION LEARNING TEXTS

ON PROGRAMMING

Automatic annotating of general text documents is

rather comprehensive task, which is currently impossible

to provide without large-scale annotations repository. We

focus on annotating learning texts from particular domain.

We have experience in learning programming domain,

there are learning texts available and any improvement

within this domain would help students to learn.

Texts for learning programming usually consist of two

different kinds of content:

∙ Semistructured texts with possible media included (in

particular pictures or videos).

∙ Programming language samples that have rather well

defined structure.

In process of annotation we identify and separate men-

tioned parts of the educational text as to achieve the best

results, we should process them differently. In most of

documents about programming the formatting style of

programming code samples differs from the formatting

style of other text and it is also particularly marked (for

instance in HTML it is obviously included within the

<code> or <pre> tags).

Processing programming code is much simpler task.

Programming languages are formal, have strict rules, well

defined grammar and great amount of information can

be extracted using patterns. Source code comments are

either excluded from the annotation process or annotated

as a free text. As for enriching information, every reserved

word, element of programming language or paradigm

typically has short explanation.

Annotation of free text is divided into several steps. Text

is tokenized and then meaningful keywords or even con-

cepts are recognized. After the recognition, most suitable

annotations for recognized entities are chosen.

Our method for annotation learning texts consists of

these four steps of document processing:

1) Document analysis.

2) Fetching of annotations.

3) Filtering the annotations.

4) Inserting annotations into the document.

Analysis step of document processing divides the source

documents into tokens, which are consequently annotated.

For document analysis we can use several approaches with

different complexity, from rather simple word matching to

more advanced syntax based analysis of text.

In annotation fetching step we collect all possibly

fitting annotations (if any) from the repository for each

recognized token. It is possible that there exist several

annotations for one token.

The filtering step is responsible for deciding which

annotations are inserted into the document and how they

are visualized. Annotation filter decides according to the

rules, which are predefined or dynamically changing by

actions in the annotator. Filtering step gives us possibility

to change the visualization of annotations to be suitable for

every student individually (a decision whether particular

annotation or set of annotations is displayed for specific

user at given time).

Goal of inserting step is to create an output document

that contains original content with contextually inserted

annotations. The inserting is rather specific to the type

of document to be annotated. Since we process text

documents in HTML format, resulted document created

in this step contains annotated words surrounded with

additional HTML tags.

Figure 1. Visualized annotation within learning system Flip.

V. EVALUATION

For evaluation of proposed method for annotation we

implemented a prototype of learning text annotator. There

were several preconditions for the evaluation of our an-

notator as we decided to integrate it to existing adaptive

educational system Flip [10]. Flip is an adaptive web

based educational system for learning programming. It is

based on evaluation of user knowledge using test questions

which are inserted into learning materials. Basically it

serves as interactive learning book (see Figure 1) with

enhanced functionality including:

∙ Creating and maintaining student knowledge model

reflecting what student (should) know or have

learned.

∙ Advising most appropriate topics of learning texts ac-

cording a level of students’ understanding of current

subject.

∙ Selecting test questions and determining students’

level of knowledge within a learning subject.

We knew exactly the document which served as an in-

put, a textbook for Functional and logic programming

course. This textbook has been already successfully used

in previous experiments with mentioned educational sys-

tem [11].

We implemented the annotation process as a stream

processing of the document:

∙ In the analysis step, the annotator divides the doc-

ument into tokens and transforms them into the

normalized form (e.g., removing capitalization, dia-

critic).

∙ The fetch step handles tokens consequentially, for

each token it obtains available annotations from the

repository.

∙ In the final step, the document is recreated from

tokens and chosen annotations.

Annotations repository is realized using an XML file

for persistent storage of annotations and modified hash

map as a memory model of the repository. The repository

was designed to map N annotations onto one keyword.

Fetching annotations operates in two steps. At first, we

look for the exact match of keywords in the incoming

token. If no keyword is found, we proceed with the

search of the closest match with given token; if sufficiently

similar keyword is found the annotation for the keyword

is returned.

Visualization of annotations is implemented using sep-

arate CSS style for annotated document and nested

 tag. Various annotated terms are highlighted

with different colors; in tested implementation we have

used two colors (for explanations of terms and functions

of programming language). In Figure 1 we see blue

color used for explanations of terms such as “functions”

(“funkcie” in Slovak) or “lists” (“zoznamy” in Slovak)

and green color for Lisp language functions such as LIST.

Colors used for highlighting of annotated terms are pale in

effort not to disturb student while reading the document.

Since highlighting every annotated term makes often the

document less readable than original (even with barely vis-

ible highlighting colors), we proposed a filter controlling

visualization of fetched annotations. Highlighting same

annotated terms which are close to each other is rather un-

necessary. We defined minimal distance measure between

identical terms to be highlighted both and implemented the

distance filter to control highlighting of terms. Distance

filter maintains the count of all processed tokens (current

position within the stream) and for every annotated token

it holds position where the token was last time highlighted.

The filter checks the last highlighted occurrence of

incoming token and if

currentPosition− lastPosition ≥ minimalDistance,

the token is going to be highlighted. Minimal distance is

initially set to 70 tokens1, but it can be changed through

web service interface for every annotated document. How-

ever, even not highlighted terms, which were annotated are

active, the user can interact with them and see attached

annotation.

We obtained data for annotations semi-automatically.

Main source for the annotations was the documents itself.

Textbook used contains the list of the most common

Lisp functions, each with a short explanation and syntax.

We also noticed that every example of input/output of

Lisp interpreter (demonstrating the usage of functions)

contains the same sequence of characters, to be exact

“* (” (underscore represents space). Using simple regular

expression matching we gathered more than 100 examples

and matched them to already obtained list of functions.

As a result we got annotations for 65 functions, each with

syntax, description and example of use. Additionally we

manually created 19 annotations containing explanations

of terms related to functional programming and Lisp

language.

Client side of the Flip web interface is written

JavaScript; server side is developed using ASP.NET tech-

nology. Since our annotation system is developed in Java,

it was necessary to design a communication interface for

successful integration. For this purpose we developed web

service interface for the annotator.

Described loose integration with the Flip system al-

lowed us to easily test our annotator without the need of

creating separate system just for evaluation.

We tested our annotator in the experiment aimed

broader to an analysis of behavior of learners of pro-

gramming languages using several means for increasing

effectiveness of learning mainly based on personalization.

The experiment was aimed at programming learning with

assistance of interactive content inserted into learning text.

We could also compare effectiveness of annotation and

adaptive navigation with questions.

For each student participating in the experiment we had

his grade point average (GPA), hence we had an estimation

of abilities and skills of particular student. Students were

divided into three groups (marked as A, B and C). Each

of group had different settings:

∙ A – plain text without any interactive content,

∙ B – text with annotations,

∙ C – text with questions and adaptive navigation

within textbook.

The students had 90 minutes to learn basics of func-

tional programming using Flip. Then they were given

a test focused on practical Lisp forms evaluation and

construction. Our hypothesis was that the students from

group B achieve better results than students from group A.

Results of the experiment are in Table 1.

The experiment showed that average result of the group

B was not significantly different (0.05 point difference

1Allowing maximum of two the same highlighted terms within one
screen; it was tested in the computer lab, where the experiment was held.

Table I
RESULTS OF TEST IN THE EXPERIMENT.

All students GPA≥1.8

Avg. Sd. Avg. Sd.

A 15 5.25 12 3.92
B 14.95 3.77 13.4 1.71
C 16.59 5.05 15.25 3.05

of total 27 points) from result of group A, while results

of group C were considerably better as we can see in

Figure 2. At this point we considered that annotations had

not affected all students in same way.

Figure 2. Standard distribution of results.

We filtered out results of students with GPA less than

1.8 points (those with good studying results) and observed

visible difference in results of groups a and B (in favor

of group B, see Figure 3), while result of group C were

even better. In addition we noticed remarkably smaller

standard deviation of test results of students in group B

which shows another benefit of the annotation, specifically

helping weaker students to reach average level of knowl-

edge faster.

Figure 3. Standard distribution of results of students with GPA ≥1.8.

We did similar filtering of results focused on students

with better GPA. It showed us almost same average results

for all three groups (results were in 16.5 ± 0.3 point

range).

From these results we can assume that annotations

give most noticeable benefits to weaker students, while

better students are to achieve good results without such

assistance (we should have in mind that students were pre-

sented with basics of functional programming language;

the students did not have any previous knowledge on

functional programming, but clever student approaching

a quality text is obviously able to better to comprehend

the content which is on basic novice level).

VI. CONCLUSIONS

Annotations are being more and more widely used in

documents on the Web. This brings the content enrichment

and interaction to every document on the Web. Con-

tent annotation is useful approach also to assist students

in web-based educational systems. Annotations are very

helpful if they are inserted into documents containing

many terms specific to subject. As we saw in the results

of our experiment, annotations showed value in assistance

to weaker students helping them to achieve results closer

to average result of all students.

We experimentally evaluated automatic annotations as

one part of the proposed concept. Manual user annotations

can also produce considerable advantage over plain docu-

ment and bring important social aspect. In our future work

we will explore more deeply the effect of user annotations

within learning system on studying results of students.

Another important part of our future research is mak-

ing annotations adaptive to a document viewer including

adaptive annotations filtering and visualization. It is based

also on the fact that user annotations together with tags

represent fine source of user interests [12]. Moreover,

annotations or tags can serve also for identification of

user groups as similar annotations can lead to similar

interests [13]. There is promising direction of combining

annotations with adaptive navigation [14], which is suit-

able especially for educational texts and considering user

characteristics acquired while he is studying educational

materials [15].

ACKNOWLEDGMENT

This work was partially supported by the Cultural and

Educational Grant Agency of the Slovak Republic, grant

No. KEGA 3/5187/07 and by the Slovak Research and

Development Agency, the contract No. APVV-0391-06.

We wish to thank Oto Vozár, Michal Barla and Marián

Šimko (members of PeWe group, pewe.fiit.stuba.sk) for

their invaluable contribution to the integration of our an-

notator to the Flip system and helping with the experiment.

REFERENCES

[1] M. Tvarožek and M. Bieliková, “Reinventing the web
browser for the semantic web,” in WIRSS’09: Proc. of
the WIRSS Workshop at the IEEE/WIC/ACM International
Conferencie on Web Intelligence. IEEE Computer Society,
2009, pp. 113–116.

[2] P. Brusilovsky, S. Sosnovsky, and M. Yudelson, “Addictive
links: The motivational value of adaptive link annotation,”
New Review of Hypermedia and Multimedia, vol. 15, no. 1,
pp. 97–118, 2009.

[3] P. Brusilovsky, “Methods and techniques of adaptive hy-
permedia,” User Modeling and User-Adapted Interaction,
vol. 6, no. 2-3, pp. 87–129, 1996.

[4] L. Reeve and H. Han, “Survey of semantic annotation
platforms,” in HSAC’05: Proceedings of the 2005 ACM
Symposium on Applied Computing. New York, NY, USA:
ACM, 2005, pp. 1634–1638.

[5] B. Popov, A. Kiryakov, A. Kirilov, D. Manov,
D. Ognyanoff, and M. Goranov, “Kim – semantic
annotation platform,” Journal of Natural Language
Engineering, vol. 10, no. 3-4, pp. 375–392, 2004.

[6] M. Adam, “An approach to automated on-line annotation,”
in Proc. of research project workshop Tools for Acquisition,
Organization and Presenting of Information and Knowl-
edge, P. N. et al., Ed., 2007, pp. 20–25.

[7] M. Laclavik, M. Šeleng, M. Ciglan, and L. Hluchý, “Ontea:
Platform for pattern based automated semantic annotation,”
Computing and Informatics, vol. 28, no. 4, pp. 553–577,
2009.

[8] P. Mika, M. Ciaramita, H. Zaragoza, and J. Atserias,
“Learning to tag and tagging to learn: A case study on
wikipedia,” IEEE Intelligent Systems, vol. 23, no. 5, pp.
26–33, 2008.

[9] P. Nokelainen, J. Kurhila, M. Miettinen, P. Floren, and
H. Tirri, “Evaluating the role of a shared document-based
annotation tool in learner-centered collaborative learning,”
in In Proc. ICALT 2003. IEEE Computer Society Press,
2003, pp. 200–203.

[10] O. Vozár and M. Bieliková, “Adaptive test question se-
lection for web-based educational system,” in SMAP’08:
Proc. of the 2008 3rd Int. Workshop on Semantic Media
Adaptation and Personalization. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 164–169.

[11] M. Bieliková, “An adaptive web-based system for learning
programming,” International Journal Continuing Engineer-
ing Education and Life-Long Learning, vol. 16, no. 1/2, pp.
122–136, 2006.

[12] M. Barla and M. Bieliková, “On deriving tagsonomies:
Keyword relations coming from the crowd,” in ICCI’09:
Proc. of Int. Conf. on Computational Collective Intelli-
gence. New York, NY, USA: LNAI 5796, Springer, 2009,
pp. 309–320.

[13] S. Bradshaw and M. Light, “Annotation consensus: impli-
cations for passage recommendation in scientific literature,”
in HT’07: Proc. of the 18th Conf. on Hypertext and
hypermedia. New York, NY, USA: ACM, 2007, pp. 209–
216.

[14] R. Farzan and P. Brusilovsky, “Annotated: A social nav-
igation and annotation service for web-based educational
resources,” New Review in Hypermedia and Multimedia,
vol. 14, no. 1, pp. 3–32, 2008.

[15] M. Barla, M. Tvarožek, and M. Bieliková, “Rule-based user
characteristics acquisition from logs with semantics for per-
sonalized web-based systems,” Computing and Informatics,
vol. 28, no. 4, pp. 399–427, 2009.

