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Abstract. The promise of the Semantic Web has yet to be realized, partly 
because there are few real-world applications that allow end-users to access, 
view and process Semantic Web information. We aim to facilitate Semantic 
Web adoption by providing users with advanced exploratory search capability 
over Semantic Web data by providing a faceted exploratory search interface for 
arbitrary Semantic Web repositories. Our approach takes advantage of metadata
describing the structure of the respective information spaces to construct facets 
that can be used to visually construct semantic queries. Subsequently, we 
generate result overviews to display individual search results and lastly generate 
an incremental graph-based view for individual resource exploration. We 
performed proof of concept validation of our interface generation approach and 

present the lessons learned by a small scale feedback gathering user study.
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1   Introduction

Although the Web has become an almost ubiquitous virtual information space 
providing information, services and communication tools, there are still (large) parts 
of the Web that are not generally accessible to end-users. The Deep Web which 
accounted for most of the data on the Web in 2005 [5] consists of many databases 
which can be accessed over the Web by end-users through querying interfaces.
Typical search engines cannot index the Deep Web as its contents are hidden in 
databases and exist only temporarily in the form of web pages when a query is made.

The Semantic Web aims to provide better search and browsing capabilities by 
enabling machine r eadability of information via ontologies and metadata [9]. Most 
Semantic Web content is part of the Deep Web and stored in publicly accessible 
SPARQL endpoints, in the form of distributed Linked data or as metadata associated 
with legacy web documents. Despite continuous progress in semantic search engines 
such as Sindice.com, the original promise of the Semantic Web still remains 
unrealized [9]. The main challenges for Semantic Web adoption lie in its:



 Visualization – Semantic Web contains raw information without any associated 
presentation templates thus offering no default way to render it in human readable 
form making end-user grade visualization difficult. Furthermore, resources can be 
associated with legacy web content (web pages, images, videos, etc.) or have many 
attributes and relations to other resources causing information overload.

 Querying – semantic queries resemble relational database queries rather than 
typical keyword queries used in web search engines making them impractical for 
most users. Manual construction of semantic queries (e.g., in SPARQL) is a 
complex task, which in addition to query language proficiency requires prior 
knowledge of the respective information space.

 Exploration – the Semantic Web is essentially a graph of resources and their 
attributes and relations, and also associated legacy web documents (e.g., web pages 
or multimedia). Exploratory search principles [7] stress open ended tasks, learning 
and understanding of information in context, not just finding a specific resource
e.g., with a traditional search engine. Here orientation support, multiple navigation 
and/or visualization options and the ability to move towards a goal from different 
directions are needed to provide satisfactory user experience.

Our aim is to facilitate Semantic Web adoption, which is now seriously hindered 
by the lack of end-user grade search and exploration tools, by providing an 
exploratory browser for the Semantic Web. To achieve this goal we have to address 
existing problems associated with the present Web, such as information overload, the 
navigation problem or web dynamics (i.e., constant, uncontrolled changes).

In our previous work, we devised a faceted semantic exploratory browser taking 
advantage of Adaptive Web [2] and Social Web [11] approaches to provide 
personalized visual query construction support and address guidance and information 
overload [13]. In this paper, we extend our browser with user interface generation
using metadata describing the presented information spaces to provide users with a 
smooth user experience accounting for dynamic changes in the information space.

We present an overview of related work in section 2, and describe the novel 
generation of the respective parts of the browser’s exploratory search interface –
result overviews, graph view and facets in sections 3 and 4 respectively. Next, in 
section 5 we present proof of concept validation of our approach in the domain of 
digital images, the feedback gathered in a small scale user study and the lessons 
learned so far. Lastly, we conclude and summarize our contribution in section 6.

2   Related Work

Our work has a strong multidisciplinary background ranging from Information 
retrieval to Adaptive web-based systems and HCI with focus on faceted browsers and 
facet generation, exploratory search, information visualization and the Semantic Web.

Wilson and schraefel performed a study comparing three prominent exploratory 
browsers – Flamenco, mSpace and RelationBrowser++ [15]. While Flamenco and 
RelationBrowser++ are more traditional faceted browsers, mSpace takes advantage of 
RDF data (native to Semantic Web) to provide users with a set of customizable filters



that can be used to visualize a subspace of a high dimensional information space. The 
RelationBrowser++ is tailored to exploration of large statistical data and persistently 
displays all facets at the top unlike Flamenco, which hides exhausted facets [16].

Unlike all previous browsers, the faceted browser Factic stresses personalization as 
a vital feature enabled by user action tracking and evaluation [13]. In order to better 
understand user behavior in faceted browsers, Kules et al. performed a user study 
examining how searchers interact with individual parts of a faceted browser. The 
study discovered that users primarily explore the result list and the facets, while 
mostly ignoring the current query. Kules also argued that the design of exploratory 
search tasks as well as methodologies for evaluation of exploratory browsers were 
still in an early stage of development making thorough evaluation difficult [6].

The BrowseRDF faceted browser provides elementary facet generation capability 
over simple RDF data [8]. BrowseRDF automatically identifies facets in source data 
based on several statistical measures, but offers only very limited interaction options 
and does not consider semantic metadata provided in the more expressive RDFS and 
OWL formats. Other approaches include automatic multi faceted hierarchy generation 
from textual collections [3], and middleware solutions posing as proxies between 
databases and users providing a faceted interface by dynamically suggesting a number 
of facets using precomputed decision trees [1].

Neither of these approaches can be effectively used for complex interactive 
exploration of Semantic Web content, which in addition to faceted querying needs to 
support interactive information visualization and exploration o f graphs (the Semantic 
Web being a graph). The VisGets interface allows users to perform 
interactive/exploratory web search by querying it in three dimensions – time, location 
and topic, while also providing advanced visualization of search results [4]. However, 
VisGets uses its own crawling and indexing engine and thus cannot be effectively 
used for general web search or Semantic Web exploration. Here, also graph 
visualization and interaction approaches must be considered as described in [10].

3   Exploratory Search Interface Generation

We previously devised a personalized faceted browser for semantically enriched 
information spaces [13], which used personalization to improve overall user 
experience. In order to facilitate exploratory search experience, we extended the base 
browser with support for multi-paradigm querying and exploration including 
keyword-based and content-based search (query-by-example), adaptive result 
overviews and incremental graph-based resource exploration [12]. This however was 
still not enough due to the dynamic nature of the information spaces (e.g., users 
constantly adding or modifying information) where the ability to automatically adapt 
to changes, e.g. by (automatically) generating user interfaces, is crucial.

Thus, our focus lies with the generation of exploratory search interfaces for the 
Semantic Web environment, although this can be somewhat generalized towards the 
Deep Web and even legacy Web environment. In order to support exploratory search 
and achieve these goals, we need to support three parts of user experience:



 Query construction, which includes the initial construction of an exploratory 
search query, its modification and execution; to support multi-paradigm search and 
exploration based on our previous work, we need to support keyword-based, view-
based (faceted) and content -based (query-by-example) query construction.

 Result browsing, which includes the rendering of suitable result overviews, 
selection o f result ordering and the displayed result attributes, and support for 
effective selection of individual results for further exploration.

 Resource exploration, which includes the detailed presentation of individual 
resources, their attributes and relationships with other existing resources.

We address these issues by generating a set of user interfaces each supporting the 
individual stages of the exploratory search process. We generate:

 Faceted browser interfaces for advanced query construction and modification.

 Result overviews for effective presentation of selected result attributes.

 Graph-based exploration views for incremental horizontal exploration of semantic 
resources and their relations with other resources.

3.1   Information Space Representation

We work with semantically enriched information spaces, e.g. an ontological 
repository, where both metadata describing the structure of the information space and 
data are represented by ontologies (e.g., in RDFS or OWL). Thus our approach 
assumes a description of classes, individuals, relations and attributes describing a 
particular domain. For example, in the digital image domain, di:Author and di:Photo
are classes; di:Author_1 and di:Photo_1 are individuals, while di:createdBy is a 
relation between di:Photo_1  and di:Author_1. Similarly, di:viewedCount equaling 10
is an attribute of di:Photo_1, also defining the domain of the attribute as the class 
di:Photo and its range as an xsd:int (see Fig. 1).

Fig. 1. E xample o f a  s i mple domain ontology for the digital image domain. Metadata 
describing the domain model are shown at the top; individuals representing data are shown 
below. Round nodes denote complex resources with URIs, rectangular nodes denote literals.



As shown in the above example, a domain ontology as defined by W3C contains a 
detailed standardized description of classes, properties (relations and attributes) and 
the used data types, effectively defining a data model. Ontologies can also be 
populated with individuals, which conform to the specified domain model and 
materialize it in instances of classes and properties. Note that the ontology is in fact 
an oriented graph where nodes represent individual resources.

3.2   Result Overview Generation

We generate two result overviews – the ListView shows thumbnails and properties of 
individual results (see Fig. 2), while the MatrixView shows thumbnails, provides 
additional information in tooltips, and offers a generated editing pane for (batch) 
modification of individual result attributes (see Fig. 3).

Fig. 2. Generated facets are shown on the left with a list-based result overview showing result 
properties (right). The Author facet corresponds to a direct object facet, while the Aspect ratio 
and Camera facets are indirect object facets linked via an EXIF object with the original photo.

In the above example, ListView shows properties of a specific result directly 
derived from the domain ontology visualized as label -value p airs. For multi-value 
properties such as Type in Fig. 2, a column with all values is shown. We either show 
all properties to maximize information or apply personalization to select only the 
most relevant properties (detailed personalization description was described in [13]).

In MatrixView,  the generation principles remain the same except for the editing 
pane, which is generated separately. For each specific result type, we identify all 
applicable properties from the domain ontology metadata, construct editing widgets 
based on property types (e.g., text boxes with language selection or auto-complete 
combo boxes with single/multi -value support). Properties with existing values are 
shown first, while properties without values are shown at the bottom (see Fig. 3).



Fig. 3. Example of a generated matrix result overview showing image thumbnails (right), and 
the correspondingly generated annotation pane for collaborative content creation (left).

The generated graph exploration view consists of the graph visualization window, 
predicate filtering windows and an options toolbar (see Fig. 4). Users can access the 
view either directly by typing in the URI of the node they wish to explore or by 
exploring a result found in the faceted browser (see Fig. 3).

The graph itself is generated directly from the domain ontology showing only 
individuals (objects) and their relations. Dark nodes correspond to individual 
resources, white nodes correspond to relations between them; arrows denote relation 
directions, node attributes (i.e., values of literal properties) are normally hidden and 
only shown as tooltips after hovering over a node.
Relations are intentionally visualized as separate nodes connecting resources to 
reduce information overload as one relation can have multiple values and to improve 
graph layout. E.g. in Fig. 4, the relation weather shown on the right would otherwise 
have to be displayed on all edges making the graph less readable.

Each exploration sessions starts by showing the first dark node (individual) and its 
direct neighbors, which corresponds to a window or a view of the graph. The user can 
next move the visible window by selecting another central node, or incrementally 
expand the view by expanding one or more of the visible nodes. The view in Fig. 4
was initiated by showing the node Trees (left) and expanding the node Sunny.

To make the graph understandable, we employ a force-based layout algorithm, but 
also allow the user to fix and manually reposition nodes in the resulting graph. Apart 
from traditional view panning, users can use two zoom options – regular zoom 
enlarges or shrinks the view, advanced zoom spatially expands dense node clusters to 
make them less crowed. Lastly, as ontologies often contain much data, we also enable 
users to hide irrelevant nodes manually thus reducing information overload.



Fig. 4.  Example of our generated graph-view exploration interface. Dark nodes represent 
individual resources, white nodes correspond to relations (top). Hovering over nodes shows the 
attributes of a node (center); additional tools include zooming, node hiding and history (right), 
with additional filtering options for languages and data/schema only visualization (bottom).

4   Facet Generation

During facet generation, we examine metadata describing the information space, 
identify patterns corresponding to facets, construct facet restrictions based on the 
identified metadata and map the resulting facet onto the graphical user interface and 
the semantic back-end, which provides querying services. As such, facet generation 
must define these facet properties:

 A facet template, which corresponds to a pattern found in domain metadata and 
specifies the overall type and behavior of the facet.

 A restriction template, which defines how the individual restrictions in the facet 
are constructed and mapped onto the domain ontology.

 A query template, which defines how the back-end query engine creates database 
queries and maps them onto facet restrictions.

 A visualization and interaction template (i.e., the corresponding widget type), 
which binds the facet to the graphical user interface and handles user input.

The purpose of the facet generation process is to identify specific predefined 
patterns in the metadata and map them onto a set of predefined templates in three 
successive steps: facet identification, construction and mapping as described below.



4.1   Facet Identification

During the facet identification stage, we identify the facet template, restriction 
template and query template. We fi rst search for eligible candidate properties by 
examining properties of individual instance types and their transitively associated 
properties, which can be used for automated facet construction from the domain 
ontology based on low-level metadata facet templates. We distinguish:

 object facet templates that correspond to properties having complex object values 
(e.g., a class such as di:Author ), and

 literal facet templates that correspond to properties having simple values (e.g., 
numbers, dates or strings).

In the example in Fig. 1, the di:createdBy is a suitable candidate property matching 
the class -property-class pattern between di:Photo and di:Author, resulting in an direct 
object facet template.

Similarly, we define two restriction templates – enumeration, which corresponds a 
fl at list of restrictions (e.g., days of the week), and hierarchical taxonomy, which 
corresponds to a hierarchical tree of values connected via a transitive property in the 
domain model (e.g., a hierarchy of geographical locations such as country-state-city-
street). We distinguish these query templates based on the instance-property relation:

 Direct query template, which corresponds to the direct property pattern:
{instance} property {value}

 Indirect query template, which corresponds to the indirect property pattern:
{instance} property1 {} ... {} propertyN {value}

Our facet identification algorithm tries to match these predefined templates and 
their variations onto the domain ontology metadata, evaluates possible matches and 
forwards successful matches to the successive facet construction stage.

4.2   Facet Construction

After a facet has been identified, its internal representation must be constructed before 
it can be used in the browser. The facet construction stage applies the templates 
identified in the previous stage, constructs facet restrictions based on the restriction 
template, and persistently stores facet metadata for future use.

The crucial step of facet construction is the initialization of facet restrictions using 
the restriction template and the definition of the interaction mode. Normally a facet 
can work as a list of restrictions from which users can select one or more values, or as 
a search box where users can search for and select a specific restriction. We determine 
the interaction mode based on the overall number of potential restrictions; list mode is 
used for a small number of predefined values (e.g., days of the week), search mode is 
used for large numbers of values (e.g., all cities on Earth). If an ordering of values is 
defined in the ontology for object values, we can also create restriction intervals to 
cover continuous values (e.g., real numbers or dates).



4.3   Facet Mapping

The last facet mapping stage selects a suitable user interface widget to render the 
generated facet in the faceted browser, and maps the constructed facet and restriction 
values onto the widget. The widget provides facet visualization (see Fig. 2) and 
handles user interaction forwarding events and facet metadata to the back-end search 
services, which use the query template and the user selection in the facet to construct 
SPARQL queries in order to retrieve results corresponding to the generated facet.

Although a broad range of potential interface widgets could be developed, such as 
lists, histograms, maps, timelines, etc., their detailed description is beyond the scope 
of this paper as automated discovery of what specific visualization/interaction to use 
would likely prove difficult. Thus we only employ list widgets at this time and leave 
the use of more advanced widget types as one possible direction of future work.

5   Validation

We reworked our original personalized faceted browser prototype [14] with the 
interface generation principles described above as a client-side Silverlight application 
working inside a web browser to minimize deployment effort. This allowed us to 
move user specific functionality onto the client and also provide interactive features 
not support ed by HTML (e.g., the interactive graph view). We performed several 
experiments to validate individual parts of our approach in the digital image domain.

Our goal was to validate two primary aspects of our solution – our facet and result 
overview generation approach, and the novel graph-view Semantic Web exploration 
approach. Consequently, we performed two groups of experiments:

 A proof of concept experiment with the facet generation approach, where the goal 
was to verify that our approach generates meaningful and usable facets for our 
personalized faceted browser. Note that the goal was not to generate the best 
possible set of facets, but rather a good enough set to use for personalization.

 A user study with our graph exploration approach, the goal being to gather user 
feedback on the generated GUI and its usefulness for Semantic Web exploration.

Data. Our domain ontology of images is based on the popular Kanzaki EXIF 
ontology (http://www.kanzaki.com/ns/exif) and contains about 8 000 manually and 
semi-automatically annotated images. The entire ontology consists of 35 classes, 50 
properties (including relations and attributes), more than 32 000 individuals and in 
excess of 150 000 facts. For individual photos, the ontology describes EXIF metadata 
as supplied by the camera, information about formats in which the photos are 
available (e.g., resolution, aspect ratios), and optional additional annotations such as 
the author, the object and background of the photo, the place, overall theme and 
expression, lighting conditions, weather and the event to which the photo belongs.

Methodology. In the proof of concept experiment, we generated facets from the 
available data and examined how the original browser behaved in practice and 



whether the interface was still usable for its intended purpose in terms of usability and 
performance. We performed several experiments with and without personalization, 
and also after some changes in the information space have been made.

In the user study with our graph exploration interface, we made our browser 
available to a target group of 10 end-users aged between 20 and 25 years with an IT 
background. As none of the users had previous knowledge of Semantic Web 
principles nor had used similar graph-based tools before, each user was given a brief 
introduction about the functionality of the browser. Next, the users were asked to 
complete a set of 5 tasks using the browser which also counted the time and number 
of clicks made (e.g., finding a specific image, discovering image properties or getting 
a better understanding of the domain). Lastly, each user was asked to fill out a 
questionnaire with the results of the tasks and his experience with the browser.

Results and Lessons Learned. The experiments with facet generation proved the 
approach was viable for interface generation with minimal performance impact. We 
managed to distinguish facet and restriction templates, direct query templates, and 
construct and map facets to interface widgets and use them in our exploration 
interface without any significant negative impact over manually created facets due to 
facet generation. Based on our experiments, we point out these lessons learned:

 Identification of direct query templates resulted in many facets being generated, 
which we expected to handle at the personalization stage later in the browser. 
However, this had negative impact on performance and we had to employ selection 
metrics (e.g., based on significance) already during the facet identification stage.

 The identification of indirect query templates was limited due to the complexity of 
selecting viable options. Consequently, either the identification algorithm must be 
further refined or a workaround via indirect nested facets (i.e., facets in facets) 
needs to be used complicating facet generation and mapping.

 During facet generation and result overview generation, blank nodes and helper 
objects in the domain ontology caused problems as, e.g., empty, meaningless or 
unnamed interface items were generated and had to be accounted for.

 Some generated facets such as location eventually had too many restrictions (e.g., 
hundreds) making them unusable and significantly decreasing performance. This 
required the change of the interaction mode from list mode to search mode, where 
users could type in their desired restriction instead of s electing from a list of 
hundreds of items. This problem could also be alleviated by prior hierarchical 
structuring of the information space before facet generation.

 The users preferred alphabetical restriction ordering in facets; other orderings 
such as relevance based or potency based had negative impact on user experience 
as users were unable to seek in the restrictions which were in an unexpected order.

 Using type/information specific facet widgets instead of list widgets would likely 
improve usability in specific cases, such as date selection via calendars, location 
selection via maps or timeline selection via histograms as was done in [4], but 
effectively generating mappings for advanced widgets would be more complex.



The user study with the graph exploration interface showed that 9 out of 10 users 
managed to find the specified image, although the time required varied widely – 141 
seconds and 8 clicks were required on average, although the fastest user needed less 
than 50 seconds while the slowest one required almost 5 minutes. Overall, the users 
managed to answer 75% of the questions correctly leaving 25% false answers (this 
also includes answers that were close to the correct ones, but not exactly right).

Based on these results, we conclude that graph-based exploration is viable for 
Semantic Web browsing as most users were able to accomplish the given tasks 
despite having no prior experience with a similar interface. Still, improvements to 
layouting and node selection are necessary to improve understandability and task 
times, which was also confirmed by user feedback which indicates that non-expanded 
graphs are easy to understand (rating 4.5 on a 5 level Likert scale), while expanded 
graphs are less readable (rating 3.4). Further feedback indicates that although 
response times were generally acceptable, some operations took too long to complete 
(e.g., loading the new graph aft er expanding a node took sometimes too long).

6   Conclusions

We described our novel approach to exploratory user interface generation for the 
Semantic Web with specific focus on facet generation, result overview generation and 
graph view generation. Based on our experiments in the digital image domain, we 
argue that the approach works and is viable for its intended purpose. Consequently, 
we see our primary contribution in:

 Devising an all-around method for (semi)automated generation of Semantic Web 
exploratory search interfaces addressing interfaces for query formulation, result 
overview browsing and individual result exploration.

 Enabling Adaptive Social Semantic Web exploration and thus facilitating the 
adoption of the Semantic Web by end-users.

Despite the positive feedback we got, we encountered scalability issues with 
exploratory search approaches over remote repositories, as network delays increase 
the response time of both interface generation (if performed online) and of actual end-
user exploration of the respective information spaces.

Although the described method was primarily intended for Semantic Web 
repositories and possibly Linked data exploration, most of the described principles 
could be extended to a Deep Web relational database, provided that metadata 
describing the structure of the information space were available.

Even more interesting is the extension of the proposed approach for legacy web 
content for specific pages (e.g., personal browsing history) or for whole web sites 
(e.g., generating a faceted browsing interface for a typical corporate web site). This 
could be accomplished by taking advantage of contextual/navigational links between 
pages and entity extraction approaches ultimately providing a seamless search and 
browsing experience for both legacy web and semantic web content.



Acknowledgments. This work was partially supported by VEGA 1/0508/09, KEGA 
028-025STU-4/2010 and it is the partial result of the Research & Development 
Operational Programme for the project Support of Center of Excellence for Smart 
Technologies, Systems and Services, ITMS 26240120029, co-funded by the ERDF.

References

1. Basu Roy, S., Wang, H., Nambiar, U., Das, G., and Mohania, M.: DynaCet: Building 
Dynamic Faceted Search Systems over Databases. In: Proceeding of International 
Conference on Data Engineering, pp. 1463-1466, IEEE CS, (2009).

2. Brusilovsky, P., Kobsa, A., Nejdl,W., eds.: The Adaptive Web: Methods and Strategies of 
Web Personalization. LNCS, vol. 4321. Springer, Berlin (2007).

3. Dakka, W., Ipeirotis, P. G., Wood, K. R.: Automatic Construction of Multifaceted Browsing 
Interfaces. In: Proceedings of the 14th ACM international conference on Information and 
knowledge management. pp. 768-775, ACM Press, New York, USA, (2005).

4. Dörk, M., Carpendale, S., Collins, C., Williamson, C.: VisGets: Coordinated visualizations 
for web-based information exploration and discovery. IEEE Transactions on Visualization 
and Computer Graphics, 14(6) 1205–1212, (2008).

5. Gulli, A., Signorini, A.: The indexable web is more than 11.5 billion pages. Special interest 
tracks and posters of the 14th Int. Conf. on WWW. pp. 902-903, ACM, New York, (2005).

6. Kules, B., Capra, R., Banta, M., and Sierra, T.: What do exploratory searchers look at in a 
faceted search interface?. In Proceedings of the 9th ACM/IEEE-CS Joint Conference on 
Digital Libraries. JCDL '09. ACM, New York, pp. 313-322, 2009.

7. Marchionini, G.: Exploratory search: from finding to understanding. Communications of the 
ACM, 49 (4), 41-46, (2006).

8. Oren, E., Delbru, R., Decker, S.: Extending Faceted Navigation for RDF Data. In Cruz, I.,  
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P. et al. (eds.) ISWC 2006: Proc.
of the 5th Int. Sem. Web Conf.. LNCS, vol. 4273, pp. 559-572. Springer, Heidelberg (2006).

9. Shadbolt, N., Berners-Lee, T., Hall, W.: The Semantic Web Revisited. IEEE Intelligent 
Systems, 21 (3), 96-101, (2006).

10.Schulz, H.-J., Schumann, H.: Visualizing Graphs - A Generalized View. In IV 2006: Tenth 
International Conference on Information Visualization. pp. 166-173, IEEE CS, (2006).

11.Staab, S., Domingos, P., Mika, P., Golbeck, J., Ding, L., Finin, T., et al.: Social Networks 
Applied. IEEE Intelligent Systems, 20 (1), 80-93, (2005).

12.Tvarožek, M., Bieliková, M.: Collaborative Multi-Paradigm Exploratory Search. In: 
Proceedings of the Hypertext 2008 Workshop on Collaboration and Collective Intelligence,
pp. 29-33. ACM Press, New York, (2008).

13.Tvarožek, M., Bieliková, M.: Visualization of Personalized Faceted Browsing. In: Forbrig, 
P ., Paternò, F., Pejtersen, A. M. (eds.) IFIP: Human-Computer Interaction Symposium. IFIP 
272, pp. 213-218. Springer, Heidelberg (2008).

14.Tvarožek, M., Bieliková, M.: Reinventing the web browser for the semantic web. In: WI-
IAT ’09: Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web 
Intelligence and Intelligent Agent Technology, IEEE CS, pp. 113–116, (2009).

15.Wilson, M. L., schraefel, M. C., and White, R. W.: Evaluating advanced search interfaces 
using established information-seeking models. In: Journal of the American Society for 
Information Science and Technology, 60 (7), 1407-1422, (2009).

16.Zhang, J., Marchionini, G.: Evaluation and evolution of a browse and search interface: 
relation browser. In: Proceedings of the 2005 national conference on Digital government 
research. pp. 179-188, dg.o, vol. 89. Digital Government Society of North America .


