
Search in Source Code

Based on Identifying Popular Fragments

Eduard Kuric and Mária Bieliková

Institute of Informatics and Software Engineering

Faculty of Informatics and Information Technologies

Slovak University of Technology in Bratislava

Ilkovičova 3, 842 16 Bratislava, Slovakia

{kuric, bielik}@fiit.stuba.sk

Abstract. When programmers write new code, they are often interested in find-

ing definitions of functions, existing, working fragments with the same or simi-

lar functionality, and reusing as much of that code as possible. Short fragments

that are often returned by search engines as results to user queries do not give

enough information to help programmers determine how to reuse them. Under-

standing code and determining how to use it, is a manual and time-consuming

process. In general, programmers want to find initial points such as relevant

functions. They want to easily understand how the functions are used and see

the sequence of function invocations in order to understand how concepts are

implemented. Our main goal is to enable programmers to find relevant func-

tions to query terms and their usages. In our approach, identifying popular

fragments is inspired by PageRank algorithm, where the “popularity” of a func-

tion is determined by how many functions call it. We designed a model based

on the vector space model by which we are able to establish relevance among

facts which content contains terms that match programmer’s queries. The result

is an ordered list of relevant functions that reflects the associations between

concepts in the functions and a programmer’s query.

Keywords: search, source code, reuse, pagerank, ranking, functional dependen-

cies.

1 Introduction

Software development is one of the most creative things a human can do. Every day, a

programmer needs to answer several questions for the purpose of finding solutions

and making decisions. It requires the integration of different kinds of project (soft-

ware system) information, as well as, it depends on the programmer's knowledge,

experience, skills and inference. The information retrieval is a key area to obtain suc-

cess on reuse initiatives. “To reuse a software component, you first have to find it”

[13]. There were several studies conducted to find out how programmers comprehend

software systems and what information they need to know about source code [10].

The studies deal with identifying and analysing motivations, strategies, and goals,

mailto:%7bkuric,%20bielik%7d@fiit.stuba.sk

which developers have when they search in source code. In [11] authors summarize

a list of motivations (search forms) for code search. Even though several search forms

are used in code search engines, there is still room for innovations.

The structure of code is not conducive to being read in a sequential style. In gen-

eral, programmers read code selectively. They identify parts of the source relevant to

the target task. For example, programmers are looking for use of an existing piece of

code, the implementation of some functionality or code with some properties (pat-

terns). Empirical studies indicate that 40% to 60% of source code is reusable within

one application and only 15% is unique to a specific application [9]. However in

software engineering, there is necessity to adopt systematic reuse code. It requires

instruments which facilitate reuse such as source code search tools. The good source

code search tool encourages access to the existing code instead of creating new one.

The developer’s motivation and goals for searches indicate certain functionality,

which is required in such search tools.

In general, the process of identifying the parts of the source code that correspond to

a specific functionality is called concept/feature location. The aim of the process of

concept location is to find the source code that implements these concepts. The input

to the concept location process is a description of a problem (a change task) expressed

in natural language and the output is a set of software components (elements) that

implement or address the concept. However, there is a difficulty that the input and the

output are in different levels of abstraction, i.e., the input is formulated in natural

language (domain level) and the output is the source code (implementation level).

Therefore, considerable knowledge is required to translate from one level to another.

The complexity and significance of the concept location process increases with the

size of the software system. The aim of the methods for concept location is to reduce

the search space which the programmer needs to investigate (explore). One common

way of various approaches is a decomposition of the source code into units, such as

classes and functions (methods) which are enriched with additional information (e.g.

relationships between elements of the source code).

Understanding code and determining how to use it is a manual and time-consuming

process. In general, programmers try to find initial points such as relevant functions

(methods in object oriented parlance). They want easily understand how the functions

are used and see the sequence of function invocations in order to understand how

some concepts are implemented [10]. When programmers learn about a program

(source code), the control flow (execution of function calls) needs to be followed. It

means successive jumping from one function to another.

A code query helps to identify locations of interest in the source code. There exist

many developer tools and environments that facilitate a developers’ work. Short code

fragments, which are returned to a programmer’s query in current programming envi-

ronments, do not provide enough “background” to help them reuse the fragments, and

programmers usually have to invest considerable effort to understand how to reuse the

fragments. When programmers write new code, they are often interested in finding

definitions of functions, existing, working fragments, with the same or similar func-

tionality and reusing as much of that code as possible. It is important that search en-

gines support programmers in finding answers to similar questions and issues.

The most commonly used tools for code queries such as grep are based on purely

text-based pattern matching. Even the present development environments, such as

Eclipse and Visual Studio, require a great deal of learning effort. When solving a task,

programmers usually have particular questions in their mind, such as “Who imple-

ments this interface or these abstract methods?” [10]. Such question often cannot be

answered directly using existing functionality offered by development environments.

Even if a particular conceptual query is directly supported, beginning programmers

are not often familiar with their development environment, i.e., they are not yet aware

of the integrated support features. For example, even though there is a feature ”Find

references...” in a context menu of Eclipse and we can easily answer to the query such

as “Where is this method called”, novice programmers still need to be aware that the

feature - hidden in the context menu - is what they are looking for.

Keyword-based code search tools face the problem of low precision on their results

due to the fact that a single word of the programmer’s query may not match the de-

sired functionality. It is because no source code content is analyzed or the program-

mer’s needs are not clearly represented in the query.

Our goal is to enable programmers to find relevant functions to query terms and

their usages. In our approach, identifying popular fragments is inspired by PageRank

algorithm, where the “popularity” of a function is determined by how many functions

call it. We designed a model based on the vector space model, by which we are able

to establish relevance among facts which content contains terms that match program-

mer’s queries directly. The result is an ordered list of relevant functions that reflects

the associations between concepts in the functions and the programmer’s query.

This paper is structured as follows. The second section provides an overview of re-

lated work. The third section presents processing of the source code repository. In the

section 4, searching for relevant functions is presented. Finally, an evaluation is out-

lined in the section 5.

2 Related work

Current source code search engines are based on information retrieval approaches.

Text-based information retrieval systems are successfully used to locate relevant doc-

uments. Extraction of keywords from comments, names of functions and variables

were often sufficient for finding reusable routines [5]. However, these source code

search engines process code as plain text and extracted keywords have unknown se-

mantics. In other words, the search engine compares query keywords to the names of

the objects and retrieves matches. It is the most simplistic approach, which does not

take into account additional information such as dependencies among objects.

Programs contain functional abstractions, which provide an essential level for code

reusing. In other words, programmers define functions once and call them from dif-

ferent places in code. Approaches using functional abstractions to improve code

search was proposed in [6, 8]. However, these code search engines do not analyze

how functions are used in the context of other functions, despite the fact that under-

standing the sequence of function invocations is one of the important questions that

programmers ask [10].

Some approaches are based on programmer’s query refinement. In [12] authors

present approach, where queries and restrictions can be formulated in natural lan-

guage, for example, “Give me details about the bidding process”. The presented ap-

proach is based on the use of domain models containing the objectives, processes,

actions, actors and a domain ontology, their definitions, and relationships with other

domain-specific terms.

In [14] is presented an approach (CodeBroker) based on tracking what the pro-

grammer was doing. Instead of waiting for programmers to explore the reuse source

code repository by using explicit queries, information delivery autonomously locates

and presents components (code fragments) by using the programmers’ partially writ-

ten programs as implicit queries. Presented tool does the similarity analysis between

components based on a concept similarity or constraint compatibility. The concept

similarity is identified based on comments in the source code. A constraint similarity

is identified based on the function (method) signatures. It further refines the query

with inputs from the programmer.

An approach presented in [4] is based on using learning techniques. Authors focus

on the task of searching for software in large, complex, and continuously growing

libraries. They introduce the concept of active browsing, where an active agent tries to

infer programmers’ intentions and advise them.

CodeFinder presented in [7] is a tool which uses a query browser to help the pro-

grammer construct queries that can be sent to the repository. This helps the program-

mer make more effective queries. The tool is able to craft the query in a way that can

be best used by the source code repository. CodeFinder is based on Spreading Activa-

tion algorithm to search sample source code. The advantage of CodeFinder is that it

helps the programmer refine and reformulate the query. However, as the repository of

sample code increases, Spreading Activation may provide some unrelated results.

Sourcerer [1] is a search engine for open source code that extracts fine-grained

structural information from the code as a search basis. This information is used to

enable search forms that go beyond conventional keyword-based searches.

Codifier [2] is a programmer-centric search interface (tool), which enable pro-

grammers to ask specific questions related to programming languages. It is based on

indexing source code using modified compilers (C, C++, C#, VBScript) to extract

lexical and syntactic metadata.

Although the mentioned tools are promising, they do not seem to leverage the vari-

ous complex relationships which are present in the source code and therefore have

limited features. Developers have to spend considerable time by tracking relationships

and the tools do not help them effectively organize the relationships.

Our proposed method consists of two phases, namely processing of the source code

repository and searching for relevant functions given a programmer’s query.

3 Processing of the source code repository

There are two main elements in the phase of the processing of the source code reposi-

tory, namely an index creator and a function graph creator (see Figure 1). The index

creator (A1) creates a document index and a term index (A2) from the source code

repository. The purpose of the index creator is to enable to retrieve relevant functions

based on matches between terms in programmer’s queries and terms in the source

code files. The function graph creator (B1) creates a directed graph of functional de-

pendencies (B2). The PageRank process (C) is run on the directed graph of functional

dependencies, and it calculates a rank vector, in which every element is a score for

each function in the graph.

Fig. 1. Processing of the source code repository.

3.1 Index creator

The index creator creates indexes (document and term indexes) from all source code

files (documents D) of projects in the repository. The creator uses the vector space

model which is used by search engines to rank matching documents according to their

relevance to a search query. By using our parser, from each document , terms t

are extracted from comments, names of functions and identifiers. For each term t,

NLP (natural language processing) techniques, such as stemming and identifier split-

ting, are applied. Each document d is modeled as a vector of terms which occur in that

document.

For storing the indexes, we have adopted the distributed database management sys-

tem Apache Cassandra (cassandra.apache.org

). It is a highly scalable, distributed and

structured key-value store with efficient disk access. It is a hybrid between column-

oriented DBMS and row-oriented store. Cassandra was especially designed to handle

very large amounts of data. The created document index is structured as follows:

Document Document ID Term Term …

d1
 tID |

 tID |
 …

… … … … …

dm
 tID |

 tID |
 …

where for each j = 1, …, m (m = |D| is the total number of documents), each row dj

contains a unique document identifier ; a list of pairs such that tID is a unique

identifier of a term which occurs in dj and
 is a calculated term frequency val-

ue for tID and corresponding dj.

The created term index is structured as follows:

Term Term ID IDF Count Document Document …

t1

 dID dID …

… … … … … … …

tn

 dID dID …

where for each i = 1, … n, (n is the total number of extracted terms), each row ti con-

tains a unique term identifier ; calculated inverse document frequency value

(for calculation see below); the number of documents where the term ti occurs
 ;

and a list of document identifiers dID in which ti occurs.

Term frequency (TFi,j) for term ti and document dj is calculated as follows:

∑
, (1)

where ni,j is the number of occurrences of the term ti in the document dj and ∑ is

the sum of all occurrences of terms nk in the document dj.

Inverse document frequency (IDFi) for term ti is calculated as follows:

, (2)

where |D| the total number of documents in the corpus and is the num-

ber of documents where the term ti occurs. The corpus represents the set of all source

code files (documents) of all projects in the repository.

The TF/IDFi,j for term ti and document dj is calculated as follows:

 . (3)

3.2 Function graph creator

The purpose of the function graph creator is to construct a directed graph of function-

al dependencies. Nodes represent functions names (full signature of functions). A

directed edge from the function F to the function G is created if the function G is

invoked in the function F. In object-oriented programming languages, such as Java,

C# or C++, there are problems, for example, with polymorphism, inheritance and

method overloading. For solving this problem we use intermediate representation of

source code, i.e., an abstract syntax tree (AST) and control flow graph (CFG) ob-

tained from AST. The AST structures provide such information as nodes representing

class definitions, member declarations, function (method) definitions, variable decla-

rations, initialization and assignment statements, and method invocation statements.

This allows us clearly to identify method invocations.

The algorithm of creating the graph of functional dependencies by using our parser

and AST is as follows:

1. From a document d (source code file), obtain full signature of a defined function f.

2. From the full signature of the function, create unique identifier Fn using function

invocation statement obtained from AST.

3. If there do not exist a node called Fn, create a new node called Fn.

4. For each function g which is invoked in the function f :

(a) Execute step 2 and then 3.

(b) Create a directed edge from the node representing the function f to the node

representing the function g.

5. If there is an unprocessed function in the document d, execute step 1.

6. If there is an unprocessed document in the repository, select this document and ex-

ecute step 1.

3.3 Ranking functional dependencies

For ranking of the functional dependencies, we use the PageRank algorithm. Using

the PageRank, we are able to determine the “popularity” of a function. The PageRank

of a function is defined recursively and depends on how many functions call (invoke)

it. The rank value indicates importance of a particular function. On the other hand,

following functional dependencies help programmers to understand how to use found

functions, i.e. they can see and trace the sequence of function invocations.

The formula for PageRank of a function fi, denoted r(fi), is the sum of the Pag-

eRanks of all functions that invoke fi:

 () ∑
 ()

, (4)

where
 is the set of functions that invoke fi and |fj| is the number of functions that

the function fj invokes. It is applied iteratively starting with r0(fi) = 1/n, where n is the

number of functions. The algorithm is repeated until the PageRank score converges to

some stable values or it is terminated after some number of iterations. Functions

called from many other functions, have a significantly higher PageRank score than

those that are used infrequently.

There are some other methods which could be used in this phase such as Spreading

Activation Network, where the direction of edges and weight reflect the meaning and

strength of associations among documents.

4 Searching for relevant functions

The search phase (illustrated in Figure 2) enables programmers to find relevant func-

tions to query terms and subsequently to trace their usages. Searching consists of

three main steps. First, (top) relevant documents are retrieved based on a similarity

sim(dj, q) between documents (source code files) and programmer’s query q. Second,

each document dj is divided into subdocuments, where each one contains only one

definition of a function Fn contained in the “parent” document dj. For each subdocu-

ment
, a similarity sim(

, q) to the query q is calculated. Finally, an ordered list

of relevant functions is obtained so that, for each function Fn (Fn), a final score

sc(Fn, q) is calculated as the sum of the similarities and a PageRank score pr(Fn).

Fig. 2. Searching for relevant functions.

4.1 Retrieving relevant documents

When a programmer enters a query (1), for each query term wi, the NLP techniques

are applied and subsequently a list of (top) relevant documents (source code files) is

retrieved (2). The list contains documents, where at least one query term occurs in

each document. A similarity (3) between two documents (query q and a relevant doc-

ument dj) is calculated (4) using the cosine similarity (distance) as follows:

 ()

 ‖ ‖ ‖ ‖
, (5)

where da, db are document vectors. Elements of the vectors are pre-calculated TF/IDF

weights.

4.2 Subdocument processing

1. Each retrieved relevant document is divided into subdocuments, where each one

contains only one definition of a function with surrounded comments (if any).

2. From each subdocument, terms are extracted from comments, function name and

identifiers.

3. For the extracted terms, TF/IDF weights are calculated (a subdocument vector).

4. For each subdocument djk, the cosine similarity (5) to the programmer’s query q (6)

is calculated.

4.3 Ranking of the relevant functions

1. From the relevant (sub)documents, unique identifiers Fn are created using function

invocation statements obtained from AST.

2. For each function Fn, a final score sc(Fn, q) is calculated as a sum of:

(a) a similarity sim(dj, q) between the document dj in which the function Fn is de-

fined (Fn dj) and the programmer’s query q (4);

(b) a similarity sim(
, q) between the subdocument djk in which the function Fn is

defined (Fn
) and the programmer’s query q (6);

(c) a PageRank score pr(Fn) for the function Fn (7)(8) which represents “global

popularity” of the function.

Based on our initial experiments we identified a problem with included support li-

braries (in the project). Consider the following situation when a programmer wants to

find a function for compressing texture in the target project and she enters, for exam-

ple, a query “compress, texture”. However, “similar” function can be defined in a

source code of an included support library. Moreover, this function can be called from

many other functions defined in the library, too. In the case that a function for com-

pressing texture is directly defined in the project we want to prefer this function. We

solve this problem using weighting of functions of the supported libraries, i.e. we

multiply their calculated score by so-called damping factor  = 0.5.

5 Evaluation and conclusions

Typically, search engines are evaluated by experts whose task is to determine rele-

vance of the results for a given query. We implemented a plugin into Microsoft Visual

Studio which allows programmers to formulate a query and the result is an ordered

list of relevant code fragments retrieved by our method. To determine how effective

our method is, we conducted an experiment with 6 participants and 2 software pro-

jects, namely, ANNOR and The Green Game. These projects are written in C# pro-

gramming language. ANNOR is an application for automatic image annotation and

The Green Game (TGG) is a strategic computer game. Our goal was to evaluate how

well these participants could find code fragments that matched given tasks. We divid-

ed the participants into 2 groups of 3 members (group#1, group#2) and we performed

two experiments.

In the first experiment, we created a set of 6 change tasks, i.e., 3 tasks for each pro-

ject. These participants reformulated the target tasks into a sequence of words that

described concepts they needed to find. During performing the target tasks, the partic-

ipants were asked to use only the search engines, i.e., supporting tools, such as the

solution explorer and jumping, were prohibited.

The set of 6 change tasks, which we used in our experiment, is as follows:

1. Find the method for calculating a co-occurrence rank of obtained annotation and

change the damping factor to the value 0.3.

2. Find the method for loading an input image and add a log event if loading the im-

age fails.

3. Find the code fragment for extracting local features from training images and

change the sigma parameter to the value 0.45.

4. Find the code fragment for changing color of a selected object (building) and

change the current color to yellow.

5. Find the method which starts playing background music automatically in main

menu and disable this feature.

6. Find the method for rendering a radial cursor and change the radius parameter to

the value 10.

The tasks 1-3 were specified for the ANNOR project (ANNORtasks) and the tasks 4-

6 were specified for the TGG project (TGGtasks). The goal of the participants of the

group#1 was to perform ANNORtasks using our search engine. The goal of the partici-

pants of group#2 was to perform these change tasks using the built-in search engine.

Subsequently, on the contrary, the participants of group#1 were tasked to perform

TGGtasks using the built-in search engine and the participants of group#2 were tasked

to perform these change tasks using our search engine.

After performing these tasks, we compared the number of participants‘ queries cre-

ated using our search engine and the built-in search engine. The average number of

participants’ queries is shown in Table 1. We can see that by using our search engine,

the participants had to make less effort for locating target code fragments (methods).

It is confirmed by the average number of created queries for the target change tasks.

Table 1. Comparing average number of participants’ queries.

Search engine AVG number of queries

built-in search engine 5

our search engine 2

In the second experiment, we specified 2 implementation tasks. These tasks were

focused on reusing code fragments (methods) and they were formulated as follows:

1. ANNOR: Implement a tool for selecting rectangular area in the target image. Re-

use the tool for selecting irregular polygon area as much as possible.

2. The Green Game: Implement a module for rendering an elliptic cursor. Reuse

functionality for rendering the point cursor as much as possible.

The participants of group#1 were tasked to implement the first task using the built-

in search engine whereas the participants of group#2 were tasked to implement the

first task using our search engine. For implementing the second task, the participants

of group#1 used our search engine and the participants of group#2 used the built-in

search engine.

For each query, each participant evaluated relevance of the results. In other words,

once the participants obtained lists of code fragments which were ranked in descend-

ing order, they examined these code fragments to determine if they matched the tasks.

For a query and for each obtained result, a level of confidence, such as complete-

ly/mostly irrelevant, mostly/highly relevant, was assigned by the participant. Re-

trieved fragments were evaluated as relevant only if they are ranked with the confi-

dence levels mostly or highly relevant, i.e., a retrieved code fragment is relevant to a

task and the participant can understand how to reuse it to solve the task or it can be

reused directly.

In our experiment, we used the precision metrics which reflects the accuracy of the

programmer’s search. The precision is the fraction of the top 5 ranked code fragments

which are relevant to the query. The precision P is calculated as follows:

. (6)

Since we limited the number of retrieved code fragments to top 5, the recall was not

evaluated in this experiment.

The calculated average precision is shown in Table 2. It illustrates that search re-

sults, obtained using our search engine, were more relevant during performing the

tasks compared with the use of the built-in search engine.

Table 2. Comparing average precision of search results.

Search engine AVG precision

built-in search engine 0.37

our search engine 0.64

Programmers often want to locate code fragments which are notable in a software

project. Such fragments may represent, for example, internal patterns which should be

used or reused during implementing certain functionality, and therefore they do not

want to implement their own solutions from beginning. Our approach is able to locate

such fragments, because in addition to the relevance of code fragments to a given

query, our method establishes “popularity” of code fragments, i.e., it prefers such

code fragments which support and motivate programmers in the process of reuse of

existing solutions.

Our proposed method could be used in collaborative programming [3], too. For ex-

ample, programmers can annotate code fragments based on identifying their “popular-

ity” (among several projects). By adding new annotations to the source code such as

pattern/exemplar, good example, there could be improved orientation of the pro-

grammers in the code through disclosure of the current state. The programmers would

be able to see directly which parts of the code are interesting, stable or (often) reused.

Acknowledgement. This work was partially supported by the grants VG1/

0675/1/2011-2014, APVV-0208-10 and it is the partial result of the Research & De-

velopment Operational Programme for the project Research of methods for acquisi-

tion, analysis and personalized conveying of information and knowledge, ITMS

26240220039, co-funded by the ERDF.

References

1. Bajracharya, S., et al.: Sourcerer: a search engine for open source code supporting struc-

ture-based search. In Companion to the 21st ACM SIGPLAN symposium on Object-

oriented programming systems, languages, and applications (OOPSLA '06), NY, 2006, pp.

681-682.

2. Begel, A.: Codifier: A programmer-centric search user interface. In Proc. of the workshop

on human-computer interaction and information retrieval, 2007, pp. 23-24.

3. Bieliková, M., et al.: Collaborative Programming: The Way to “Better” Software. In Proc.

of 6th Workshop on Intelligent and Knowledge Oriented Technologies. EQUILIBRIA,

s.r.o., Košice, 2011, pp. 89-94. (in Slovak)

4. Drummond, Ch., G., et al.: A Learning Agent that Assists the Browsing of Software Li-

braries. IEEE Trans. Softw. Eng., 2000, pp. 1179-1196.

5. Frakes, W., B., Pole, T., P.: An Empirical Study of Representation Methods for Reusable

Software Components. IEEE Trans. Softw. Eng., vol. 20, 1994, pp. 617-630.

6. Grechanik, M., et al.: A search engine for finding highly relevant applications. In Proc. of

the 32nd ACM/IEEE Int. Conf. on Softw. Eng. (ICSE '10), ACM, NY, 2010, pp. 475-484.

7. Henninger, S.: Retrieving software objects in an example-based programming environ-

ment. In Proc. of the 14th annual international ACM SIGIR conference on Research and

development in information retrieval (SIGIR '91). ACM, New York, 1991, pp. 251-260.

8. Ossher, J., et al.: SourcererDB: An aggregated repository of statically analyzed and cross-

linked open source Java projects. In Proc. of the 2009 6th IEEE Int. Working Conf. on

Mining Softw. Repositories (MSR '09). IEEE CS, Washington, 2009, pp. 183-186.

9. Morisio, M., et al.: Practical Software Reuse. Springer-Verlag, London, 2002.

10. Sillito, J., et al.: Asking and Answering Questions during a Programming Change Task.

IEEE Trans. Softw. Eng. 34, vol. 4, 2008, pp. 434-451.

11. Sim, S., E., et al.: Archetypal Source Code Searches: A Survey of Software Developers

and Maintainers. In Proc. of the 6th International Workshop on Program Comprehension

(IWPC '98). IEEE Computer Society, Washington, 1998, pp. 180-.

12. Sugumaran, V., Storey, V., C.: A semantic-based approach to component retrieval.

SIGMIS Database, ACM, New York, vol. 34, 2003, pp. 8-24.

13. Prieto-Diaz, R., Freeman, P.: Classifying Software for Reusability. IEEE, 1987, pp. 6-16.

14. Ye, Y., Fischer, G.: Supporting reuse by delivering task-relevant and personalized infor-

mation. In Proc. of the 24th International Conference on Software Engineering (ICSE '02),

ACM, New York, 2002, pp. 513-523.

