Movie Recommendation Based on Graph Traversal Algorithms

Lubos Demovic¢, Eduard Fritscher, Jakub Kiiz, Ondrej Kuzmik, Ondrej Proksa, Diana Vandlikova,
Dusan Zelenik, Maria Bielikova
Institute of Informatics and Software Engineering, Faculty of Informatics and Information Technologies
Slovak University of Technology, llkoviova, 842 16, Bratislava, Slovakia
televido@googlegroups.com

Abstract—Media content recommendation is nowadays
a common problem. Traditional algorithms based on collab-
orative filtering require an up-to-date dataset of users and
their preferences, which is difficult to gather for huge database
of items. Content-based approach suffers from the complex
computation of similarity among items. In this paper we
propose an approach to recommendation with a focus on the
natural change of user’s interests in movies. We make use
of a graph representation and experimented with modified
graph algorithms. We design a representation of the data about
movies in a graph structure and a method which uses our data
model for recommendation. We propose four recommendation
algorithms which are capable to find recommendations based
on initial nodes, which selection is based on the user’s current
interests. We implemented these algorithms and experimentally
evaluated them with real users.

Keywords-recommendation; graph representation; graph al-
gorithms;

I. INTRODUCTION

In today’s world there is a large amount of media content
produced every day: movies, TV shows, TV programs etc.
With so many options, choosing the right content can be
difficult and overwhelming for the user. As for television,
there are tens of channels from which the user can choose
at any given moment. If he chooses the wrong channel, he
misses something he would enjoy on a different one. The
problem becomes even larger with more and more popular
televisions or videos on-demand. The user has literally
millions of possibilities from which to choose. The task
becomes very difficult without a support which filters these
possibilities.

Recommender systems analyze the taste, the mood or
the context in which the user is at the moment. Based
on the analysis, they create an accurate recommendation that
suits the particular user [1]. There are various techniques
used to create recommendations. The two main categories
of recommendation systems are content based and collabora-
tive. In both categories we should go through the entire entity
base to find the correct item to be recommended. In collabo-
rative approach this represents matrix of users and items, in
content-based it is matrix of items and their similarity. Nev-
ertheless, there is no guarantee that the estimation is correct
and the recommended item is accurate enough for the user.
Many recommendation systems try to recommend item by

pairing the extracted knowledge base with the user’s context
and taste. As a result, the recommender systems may suffer
from performance issues what makes them unusable in real
time.

In this article we aim to design and evaluate a rec-
ommendation method that uses a new approach for rec-
ommending items with various attributes such as movies.
Instead of the approaches mentioned above we decided
to design a method which makes use of graph structure. We
experimented with graph algorithms to provide comparison
and their pros and cons. Graph-based recommender systems
have been tested in the past and have shown promising
results [2]. Our contribution is in comparison of graph
algorithms and their modifications. We applied our method
for multimedia recommendation (e.g. movies, TV shows and
TV programs) in web application called Televido ', which
enabled us to experiment with various algorithms and real
users.

II. RELATED WORK

Recommender systems became very popular due to infor-
mation overload which we have to face every day. There
are approaches such as collaborative filtering or content-
based [1]. Both approaches could be boosted by using graph
representation to speed up the process of finding the most
appropriate items.

In case of collaborative filtering we naturally need homo-
geneous bipartite graph representation since we are using
single type connections among users and items. Mele et
al. [3] proposed interesting solution using graph represen-
tation of direct connections among users. These connections
express a behavior of these users. Connection among user u
and v is added when user u discovered some item earlier than
user v. This temporal modification of collaborative filtering
is similar to well-known model of PageRank [4].

In case of content-based approaches we commonly use
text optimized databases to quickly compute the similarity
among items [5]. However, a graph could be one way to
hold information on items. Especially if we use known
metadata (categories, keywords, attributes) as the content to
calculate similarity. A graph could be used as alternative to

I Televido - http://televido.tv/web

store similarity relations among items. This actually means
that we need more connection types thus working with
heterogeneous graphs. This is typical for multidimensional
recommender systems as presented by Lee et al. [6].

Another option is to combine both collaborative filtering
and content-based approach as proposed by Huang et al. [2].
In this work they proposed recommender system for digital
library using Hopfield net algorithm. This work suggests to
use graph algorithms to solve the problem of recommending
items.

In the domain of media content recommendation research
usually faces the problem calculating the similarity among
items (in content-based). Authors often propose modifica-
tions of collaborative filtering. Biancalana et al. [7] used
neural networks to train the model once. This actually re-
duced the multidimensional nature of their data but disabled
them to make on-the-fly and up-to-date recommendations
without retraining the model.

Another interesting work on using graph algorithm is
presented by Chen et al.[8]. They used tripartite graph of
users, items and queries used in the video search. This
algorithm is very similar to spreading activation which could
be promising in case of graph-based recommending. Similar
approach was also presented by Bogers et al. [9]. In their
work they used more contextual features (genre, language,
director, actor, etc.). They used probabilistic algorithm which
uses the matrix holding the intensity of transitions among
entities while user browses them.

III. REPRESENTATION OF MOVIES AND METADATA

To generate accurate recommendations we designed
a graph structure which models the data - information about
media content. Our proposed structure is based on RDF?
triplet structure and inspired by the real life - how we talk
or write about movies.

The main entities are movies, TV shows and TV pro-
grams, further referred to as just “movies”. These are the
items to be recommended. Other entities are people (actors,
directors) and genres. These are represented by the nodes
of the graph. The edges between nodes represent the at-
tributes of the movies and they act as relationships between
the entities. The resulting graph is actually one component
(connected graph), which means that every movie must
be indirectly connected to every other movie. Using real
data the attributes ensure the connectivity and complexity
of the model. For instance, every movie is associated to
multiple genres. Since we have around 40 genres and around
165 thousands nodes in total we presume that the graph is
one component. An example of the described data model
graph structure is visualized in the Figure 1.

When creating the model we assumed that people also
choose movies to watch by the actors or by their directors.

2Resource Description Framework - http://www.w3.org/TR/rdf-primer/

producer

actor

person 4 @
actor.
genre director

director

genre
roducer
@ p o
genre
director
movie 3
@

Figure 1.

Example of the data model represented in graph structure.

In our approach this pattern is easily recognized and thanks
to the model structure it is simple to determine the entities
which should be recommended. This data model structure
also ensures that we can find entities which are similar
to other entities very quickly. This similarity stored implic-
itly in the connections among nodes.

IV. RECOMMENDATION ALGORITHMS

Our recommendation algorithms are graph algorithms,
which traverse the graph structure from initial nodes. The
initial nodes represent user’s interest. An initial node might
be a movie or a genre the user likes. These initial nodes are
either selected explicitly by the user as a query or implicitly
based on the user model and the feedback from the user
using standard methods. We actually do not need user model
to be connected to nodes. We only need the list of items
which are relevant for user and use it as a query on the fly.

The algorithms try to find the nodes which are the closest
in the graph to all initial nodes, which are then returned
as recommendations. There are multiple ways of looking
at the problem of finding the closest nodes, especially
in a very complex graph, which is why we designed and
implemented four separate algorithms to compare.

Thanks to these parameters, the recommendation algo-
rithms are quite versatile. For example, the same algorithm
with different parameters can be used to recommend movies
which are currently being shown at the cinemas or only the
TV programs which will be on tomorrow night.

A. Union Colors Algorithm

The Union Colors algorithm is based on the basic
Breadth-first search (BFS) graph algorithm. The algorithm
works in the following way:

1) Mark each initial node with a different color (naturally,
colors are represented by numbers).
2) Perform a simultaneous BFS from each initial node:

a) Enqueue all initial nodes.

b) Dequeue a node and visit it.

¢) Add all neighbors of the visited which are yet
to be visited node into the queue.

d) Repeat from step b)

C1-C2: recommended
movie 3

C1: recommended
movie 2

C1: recommended
movie 1

C1-C2:
person 2

C1: initial
movie 1

C2: initial
movie 2

Figure 2. Visualization of Union Colors algorithm.

3) When a node is visited:
a) If it is yet to be colored, color it with the color
of the initial node
b) If it is already colored (with a different color),
merge the two colors into one - remember that
one color equals the other
4) Keep merging colors until the last two colors are
merged and only one color remains
5) Return the current and the next required number of
nodes in the queue as the result

To merge the colors we can make use of the extremely fast
Disjoint-set data structure, using which two colors can be
merged in nearly constant time [10]. We actually do not need
to traverse the whole graph. We only need to merge initial
colors which count reflects the number of initial nodes.

Visualization of this algorithm is shown in Figure 2.
Nodes which have the final color are going to be recom-
mended. These are the nodes which come out as output
of this algorithm. It actually means that nodes which are
colored with final color earlier are going to be recommended
as more relevant. C/ and C2 are the colors of initial nodes
and the algorithm is stopped when it reaches the node
“recommended movie 3”.

B. Mixing Colors Algorithm

The Mixing Colors algorithm is similar to the previously
described Union Colors algorithm. These two algorithms
differ in the way they deal with the representation and
the meeting of colors.

The algorithm works as follows:

1) Mark each initial node as visited by a different color.
2) Perform a simultaneous BFS from each initial node:

a) Enqueue all initial nodes.

b) Dequeue a node and visit it.

¢) When visiting a node, mark it with the colors
of all the nodes which enqueued it.

d) Try to add all neighbors of the visited node into
the queue.

i) If the node is not in the queue, add it and
remember, that it was added by the visited
node.

ii) If the node is already in the queue, do not add
it but remember that it has also been added
by the visited node.

e) Repeat from step b)
3) Continue until the required number of nodes is colored
by every color, return them.
In Figure 3 the visualization of the algorithm is illustrated.
The numbers in parentheses represent the colors of each
node after one iteration of the algorithm.

C. Energy Spreading Algorithm

The Energy Spreading algorithm is based on Spreading
activation, which is a method for searching associative
networks, neural networks, or semantic networks. Similar
to previous algorithms, it is a variation on the simultaneous
BFS algorithm. The logic of the algorithm is following:

1) Set the energy of each initial node to some constant
value.

2) Perform a simultaneous BFS from each initial node
(as described in the previous section).

3) When a node is visited its energy increases by value
E, E = =2, where E, is the energy of the parent node
which enqueued the v1s1ted node and n is the number
of nodes the parent node enqueued.

4) A node’s energy can increase multiple times, but it
only spreads it when it receives energy for the first
time.

5) Continue until the required number of nodes is visited
from each initial node.

6) Order the nodes by their energies and return the re-
quired number of the nodes, the more energy it has
the higher it is.

recommended movie 1

())(2,2)

movie 3 movie 4

GIG)G) ())6)

genre 1

()(1)(1)

person 2
()(2)(1)

initial movie 1
(1)(1)(2,2)

movie 2

()6

mmal person 1
(2)(2 1)(2,1)

Figure 3. Visualization of the Mixing Colors algorithm.

recommended movie 1 recommended movie 2 recommended movie 3

(energy =5,33) (energy =5,33) (energy =13,33)
3,33 A
33 10

person 2
(energy = 10)
; - \ /6

person 1
(energy=4)

Initial movie 2
(energy = 12)

initial movie 1
(energy = 12)

Figure 4. Visualization of Energy Spreading algorithm.

Visualisation of the algorithm is illustrated in Figure 4.
The numbers on the arrows and their width represent
the amount of energy which is being received by the re-
ceiving nodes. In the case shown in the figure, the movie
number 3 is the first in the list of recommended nodes.

D. Modified Dijkstra’s Algorithm

The Modified Dijkstra’s Algorithm is, as the name sug-
gests, based on the well known Dijkstra’s algorithms for
finding the shortest path in a graph. We implement a vari-
ation on this algorithm, which works for multiple initial
nodes.

1) Run the Dijkstra’s shortest path algorithm from each
node to (some constant) maximal depth - calculate
the shortest path from the starting node to each visited
node.

a) If the algorithm is ran from the first initial node,
put all visited nodes with the value of the shortest
path as their total value into a results set.

b) If the algorithm is ran from other initial nodes,
check if the node is in the results set. If yes, add
the shortest path value to its total value.

2) Check if each node in the results set was visited from
all initial nodes.

3) Order the nodes in the results set by their total values
of the shortest paths.

4) Return the required number of nodes from the ordered
results set.

The advantage of this algorithm is that it can be used
on a graph with weighted edges. For our recommendation
system it means that, for example, we can set all the edges
which connect genres to movies to be longer than the edges
which connect people to movies.

The logic of the algorithm is illustrated in Figure 5. The
first two numbers in parentheses refer to the distance of each
node to the initial nodes. The last value is their sum or x,
which represents that the node was not visited from both
initial nodes.

recommended movie 1

(3)(2)(5)

‘ movie3 ‘

(4)(5)(9)

movie 4
(4)(5)(9)
2
4)
2 4 & movie 2
[Bl
2
movie 1 & initial person 1
(4)(5)(9) 1 (1)(0)(x)

Figure 5. Visualization of Modified Dijkstra’s algorithm.

initial
genre 1

0)(1)(x)

V. EXPERIMENTAL EVALUATION

The goal of the experimental evaluation we performed was
to determine the best algorithm of the four algorithms we
designed and to determine the accuracy of each algorithm.
Based on the results of the experiment we intend to work
on the most successful algorithms in the future and further
modify them to make their results even better.

We filled the databases with a dataset consisting of infor-
mation about a large amount of real movies and TV pro-
grams. In the end, the graph database consisted of roughly
165 000 nodes and 870 000 relations.

The experiment we used to test our methods was based
on collecting explicit feedback from users. The user’s task
was to pick some initial nodes — movies, people or genres.
The system generated 4 different sets of recommendations
based on the initial nodes using the four recommendation
algorithms we designed. We presented each user with 7
different scenarios, in each scenario the user was sup-
posed to pick initial nodes in a different way, for example
in the first scenario we asked him to pick two animated
movies. The scenarios were implemented into the experi-
ment to ensure the recommendation algorithms were tested
on their versatility. After selection of the initial nodes
each recommendation algorithm recommended five movies
to the user; the user proceeded to order the algorithms based
on their accuracy and was also asked to rate the most accu-
rate algorithm on a scale from 1 to 5. In total, 30 users
participated in the experiment. However, not all of the
users who began the experiment completed every scenario.
In total, 168 scenarios were completed by the users and
recorded to our database, which, on average, works out to
5.6 completed scenarios per user.

The results of the experiment are shown in Table I. Here
we can see comparison of the average ratings and positions.
To discuss the results we need to add that Dijkstra and
Energy Spreading are very expensive algorithms. These al-
gorithms need relatively more time than other two proposed
algorithms to compute results. This time could be above
critical level in some cases. Especially energy spreading
could last for very long time what would cause inappro-
priate waiting on the user side (in case we need real-time

Table I
EXPERIMENT RESULTS.

Algorithm H Average rating Average position
Union Colors 2.322 out of 59 2.3095
Mixing Colors 2.9298 out of 57 2.2202

Energy Spreading 3.1892 out of 37 2.3095
Modified Dijkstra || 3.1333 out of 15 3.1607

recommendation). The numbers in ”Average rating” column
mean the average rating from the cases when the algorithm
was rated by the user (we only asked the users to rate
the algorithm they picked as the first) and the number
of times the algorithm was rated. ”Average position” means
the average position of the algorithms as sorted by the user,
which means the lower the number the better.

The results show that the users usually picked the Union
Colors algorithm as the first. This results might be biased
- because of the way the experiment user interface was
designed the first algorithm was always the same. Since
the rating of the algorithm was the lowest, we assume
the users left the first algorithm picked when they weren’t
very happy with the recommendation or were simply lazy.

Next in line are the Mixing Colors and the Energy Spread-
ing algorithms. The former had a slightly better position but
the latter had a better rating. These two algorithms appear
to be the best of all, although they might require some
improvement in the future.

The Modified Dijkstra’s rating is not bad, but it was
not picked as good nearly as often as other algorithms.
The experiment we performed also had an auxiliary goal
which was to find out information about the performance
times of the algorithms. The only algorithm which had
performance issues was the Modified Dijkstra’s algorithm,
which needs to keep a priority queue in order to work. The
other algorithms’ performance was satisfactory considering
the scale of the data model graph, the recommendation was
usually done in less than a second.

VI. CONCLUSIONS

In this paper we propose a graph-based recommendation
method for recommending media content. We designed a
graph-based data model and proposed four recommendation
algorithms. The evaluation shows promising results, but it
also shows the need to further research. Observing four
different algorithms helped to achieve an improvement es-
pecially in the precision of recommendation.

The experiment showed that we can disregard the Modi-
fied Dijkstra’s algorithm and probably also the Union Colors
algorithm and focus on improving the rest. The data model
can also be improved by instructing new types of relation-
ships, for example keywords.

The main advantage of the graph representation for the
task of item recommendation is performance. The imple-

mented methods seem to be fast enough to work in real
time. Our proposal is relevant for recommendation of huge
number items and variable interests of users. Our approach
is applicable also in other domains. Proposed traversal
algorithms could be used in domains where we need to
represent entities with variety of attributes and relations.

REFERENCES

[1] E. Ricci, L. Rokach, and B. Shapira, “Introduction to rec-
ommender systems handbook,” in Recommender Systems
Handbook. Springer US, 2011, pp. 1-35.

[2] Z. Huang, W. Chung, T.-H. Ong, and H. Chen, “A graph-
based recommender system for digital library,” in Proc. of
the 2nd ACM/IEEE-CS joint conf. on Digital libraries, ser.
JCDL ’02. NY, USA: ACM, 2002, pp. 65-73.

[3] 1. Mele, F. Bonchi, and A. Gionis, “The early-adopter graph
and its application to web-page recommendation,” in Pro.
of the 21st ACM int. conf. on Information and knowledge
management - CIKM ’12. NY, USA: ACM, 2012, p. 1682.

[4] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H.
Golub, “Extrapolation methods for accelerating pagerank
computations,” in Proc. of the 12th int. conf. on World Wide
Web, ser. WWW °03. NY, USA: ACM, 2003, pp. 261-270.

[5] M. Bielikova, M. Kompan, and D. Zelenik, “Effective hi-
erarchical vector-based news representation for personalized
recommendation.” Comput. Sci. Inf. Syst., vol. 9, no. 1, pp.
303-322, 2012.

[6] S. Lee, “A generic graph-based multidimensional recommen-
dation framework and its implementations,” in Proc. of the
21st int. conf. on World Wide Web - WWW 12 Companion.
New York, New York, USA: ACM Press, 2012, p. 161.

[7] C. Biancalana, F. Gasparetti, A. Micarelli, A. Miola, and
G. Sansonetti, “Context-aware movie recommendation based
on signal processing and machine learning,” in Proc. of the
2nd Challenge on Context-Aware Movie Recommendation.
ACM, 2011, pp. 5-10.

[8] B. Chen, J. Wang, Q. Huang, and T. Mei, “Personalized
video recommendation through tripartite graph propagation,”
in Proc. of the 20th ACM int. conf. on Multimedia - MM ’12.
New York, New York, USA: ACM Press, 2012, p. 1133.

[9] T. Bogers, “Movie recommendation using random walks over
the contextual graph,” in Proc. of the 2nd Workshop on
Context-Aware Recommender Systems, 2010.

[10] M. Fredman and M. Saks, “The cell probe complexity of
dynamic data structures,” in Proc. of the twenty-first annual
ACM symp. on Theory of computing, ser. STOC ’89. New
York, NY, USA: ACM, 1989, pp. 345-354.

