
Webification of Software Development: User
Feedback for Developer’s Modeling

Eduard Kuric and Mária Bieliková

Faculty of Informatics and Information Technologies,
Slovak University of Technology, Ilkovičova 2, 842 16 Bratislava 4, Slovakia

{name.surname}@stuba.sk

Abstract. In this paper we present an approach to leveraging experi-
ence from rapidly evolving field of information processing on the Web for
software development. We consider a web of software artifacts (compo-
nents) as an information space. Supporting any task in such environment
of interconnected artifacts depends on our knowledge on user preferences
and his characteristics. We envision the concept of collaborative software
development to improve software quality and development efficiency by
using both implicit and explicit user (software developer) feedback. It
opens a space for using approaches originally devised for the Web. The
core of our approach is based on our developed platform for independent
code monitoring where we create a dataset of developers’ implicit and
explicit feedback based on monitoring developers’ behavior. Employing
this platform we acquire, generate and process descriptive metadata that
indirectly refer source code artifacts, project documentations and devel-
opers activities via document models and user models. As an example of
our concept we present an approach for estimation of student’s expertise
in a programming course.

Keywords: webification of software development, implicit/explicit feed-
back, interaction information, user modeling, monitoring user behavior

1 Developer’s feedback in a web of software artifacts

Developers often use a web of software artifacts as a giant repository of source
code, which can be utilized for solving their software development tasks. Sup-
porting any task in such environment of interconnected artifacts depends on our
knowledge on user preferences and his characteristics. Relevance user feedback
is typically used for user profiling during long/short-term modeling of user’s in-
terests and preferences on the Web. Relevance feedback techniques have been
used to retrieve, filter and recommend a variety of items [4]. Our aim is to sup-
port software development by using both implicit and explicit user (software
developer) feedback, which creates rich interconnections between software arti-
facts. This includes not only the shift towards the use of web-based resources in
software processes, but also and more importantly it opens a space for using ap-
proaches originally devised for the Web (as a network of interconnected content)
to support the software development process.



2 Eduard Kuric and Mária Bieliková

Our work is a part of a research project called PerConIK1 (Personalized
Conveying of Information and Knowledge). We cooperate with a medium size
software company. We focus on support of applications development by viewing
a software system as a web of information artifacts. Our aim is devising the
right metrics to evaluate software artifacts and to identify particular problems
and recommending corrective actions. The core of our approach is based on our
developed platform for independent code monitoring [1]. We developed several
agents that collect and process documentations, source code repositories, de-
velopers’ activities, etc. We create within the project a dataset of developers’
implicit and explicit feedback based on monitoring behavior of developers for
the purpose of estimating developers’ expertise. For example, we exploit im-
plicit feedback such as searching relevant information on the Web and searching
in source code during performing tasks, writing and correcting source code in
development environment, and explicit feedback such as peer review (review
feedback attached to source code).

To the present, we have focused mainly on modeling developer’s expertise
in software house environment. It is based on investigation of software arti-
facts which the developer creates and the way how the artifacts were created.
In other words, we take into account the developer’s source code contributions,
their complexity and how the contributions were created to a software arti-
fact (e.g. copy/paste actions from external resources, such as a web browser);
the developer’s know-how persistence about a software artifact; and technolog-
ical know-how - the level of how the developer knows the used libraries, i.e.,
broadly/effectively. All on daily basis of software development.

In a software company estimation of developers’ expertise allows, for example,
on the one hand, managers and team leaders to look for specialists with desired
abilities, form working teams or compare candidates for certain positions, on the
other hand, developers can locate an expert in a particular library or a part of a
software system (someone who knows a component or an application interface)
[2, 5]. It can be also used to support so-called “search-driven development”. When
a developer reuses a software artifact from an external source he has to trust
the work of an external developer who is unknown to him. If a target developer
would easily see that a developer with a good level of expertise has participated
in writing the software artifact, then the target developer will be more likely to
think about reusing.

On the contrary of a software company, where software is created by pro-
fessionals, in academic environment, students learn how to design and develop
software. Moreover, a student produces significantly less data (implicit/explicit
feedback). Our goal is to provide a tool that allows a teacher to evaluate stu-
dent’s knowledge and skills (expertise) based on monitoring student’s behavior
during developing tasks and adaptation of instruments developed for the general
approach. As an example of our approach we present an approach for estimation
of student’s expertise in a programming course. It allows, for example, teacher
to adapt and modify his teaching practices.

1 PerConIK: http://perconik.fiit.stuba.sk/



Webification of Software Development: User Feedback ... 3

2 Estimation of Student’s Programming Expertise

In our approach modeling student’s expertise is based on estimation of a degree
of student’s expertise of a concept in comparing with other investigated students.
In other words, if students solve a task focused on acquiring skills of particular
concept, e.g., priority queue, then by analyzing their resultant source code, in-
teraction data and by using appropriate software metrics, we can estimate levels
of students’ expertise of the concept. By using the particular students’ expertise
estimations of concepts we are able to estimate a degree of student’s expertise for
the whole course and compare the estimations among the investigated students
based on the same evaluation criteria.

We experimented with data gathered during bachelor course on Data struc-
tures and algorithms. During seminars the students solve programming tasks.
Each week is focused on training and acquiring skills of a concept such as stack,
binary tree, hash table, etc. The students solve the tasks in a learning system
Peoplia2. Students can select to solve a simpler or more complex task focused on
acquiring skills of a concept. Students get points for their successful solutions.
In autumn semester 2013/14, 251 students enrolled in the course.

When a student submits a solution of a task to Peoplia, its correctness and
efficiency (time complexity) is evaluated. The solution is accepted if it is correct
and efficiency tests are successful. The student has unlimited number of submis-
sion attempts and the solutions are checked by a plagiarism detection system.
Estimation of a degree of student’s expertise of a concept c based on a student’s
correct solution l for a programming task t is calculated as follows:

Expc(s, t, l) = CX(t) ∗ EF (s, l) ∗ 1

log2(1 + CT (s, t))
, (1)

where CX(t) is complexity of the task t estimated based on a combination of
Logical Source Lines of Code (SLOC-L) and McCabe VG complexity metrics.
For calculation of SLOC-L we have adopted the definition from the CodeCount3.
EF (s, l) returns 1.5 if the student’s s submitted solution l is effective, otherwise
1. A solution is effective if its execution time is less than or is equal to a median
value of all execution times of submitted correct solutions for t (it is based on
preliminary experiments). CT (s, t) is a number of submitted solutions by the stu-
dent s for the task t (the last solution was accepted by Peoplia). The estimation
of a degree of student’s expertise of the course is calculated as

∑
i Expci(s, ti, li).

We estimated expertise for all students and compared our results to results
achieved on exam. 78 out of 251 students were not allowed to take the final exam
because they did not achieve the qualification criteria. Both values (estimated
expertise and points of the final exam) were normalized into the interval [0, 100].
To each student a pair (X,Y ) is assigned, where X ∈ [0, 100] is a number of
points of the final exam and Y ∈ [0, 100] is the estimated student’s expertise.
Subsequently, the values in each pair were mapped as follows: A − [92, 100],
B − [83, 91], C − [74, 82], D − [65, 73], E − [56, 64], and FX − [0, 55].

2 Peoplia: http://www.peoplia.org/
3 USC CodeCount: http://sunset.usc.edu/research/CODECOUNT/



4 Eduard Kuric and Mária Bieliková

Fig. 1. Comparison of how automatic estimation of students’ expertise correlates with
exam results.

The result of our experiment is illustrated in Figure 1. The number of con-
cordant pairs equals 143 and the number of discordant pairs equals 30. The total
number of pairs equals 173. We calculated precision as 0.83.

The idea of “webification” of software development which is based on viewing
software repositories as webs is not new. Already Knuth in 1984 presented the
idea that “a program is best thought of as a web”[3]. The novel aspect lies in
considering not only software artifacts but also users (developers) together with
their explicit and implicit feedback, which brings a new view on software and
software process metrics. It helps developers be more efficient and can enrich
them with the experience and knowledge of their colleagues while managers or
senior developers can get advantage of improved planning and decision support
via aggregation of statistical data for individual developers.

Acknowledgement. This work was partially supported by the Scientific Grant
Agency of the Slovak Republic, grant No. VG1/0675/11 and it is the partial
result of the Research & Development Operational Programme for the project
PerConIK, ITMS 26240220039, co-funded by the ERDF.

References

1. Bieliková, M., Polášek, I., Barla, M., Kuric, E., Rástočný, K., Tvarožek, J., Lacko, P.:
Platform independent software development monitoring: Design of an architecture.
In: 40th Int. Conf. on Current Trends in Theory and Practice of Computer Science
- Vol. 8327, Slovakia, Springer LNCS (2014) 126–137

2. Fritz, T., Ou, J., Murphy, G.C., Murphy-Hill, E.: A degree-of-knowledge model to
capture source code familiarity. In: Proc. of the 32nd Int. Conf. on Softw. Eng. -
Vol. 1, USA, ACM (2010) 385–394

3. Knuth, D.E.: Literate programming. Comput. J. 27(2) (May 1984) 97–111
4. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.

Cambridge University Press, USA (2008)
5. Minto, S., Murphy, G.C.: Recommending emergent teams. In: Proc. of the 4th Int.

Workshop on Mining Softw. Repositories, USA, IEEE Computer Society (2007)


