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Abstract—Electroencefalography (EEG) has a wide range of
applications in human-computer interaction and in adaptation
and personalization of the interfaces. It can be used either as a
sensor, e.g., for emotion detection, or as an input device that
allows to take actions based on the brain’s response to the
presented stimuli. For the latter, it is crucial to be able to
reliably detect event-related potentials (ERPs), which can be a
hard task because of the noise in the signal, especially when using
affordable consumer-oriented devices, such as Emotiv Epoc. In
the paper, we present a method of EEG signal processing and
classification for detection of ERP P300 wave. We particularly
focus on the adaptive channel selection and propose to use
genetic algorithm combined with linear discriminant analysis to
determine the optimal subset of electrodes for signal processing
for each individual user. We evaluated our proposed method on
a standard data set outperforming the existing approaches even
with decreasing size of a training set. In addition, we conducted
a user study with Emotiv Epoc device on a standard P300 Speller
task in order to compare the results of our method and to find
out, whether this device is suitable for P300 detection.

Keywords—EEG, event-related potentials, P300, Emotiv Epoc,
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I. INTRODUCTION

In order to have truly intelligent and personalized inter-
faces, they have to acquire various information on the users that
interact with them, such as their interests, tasks, goals as well
as individual traits and affective states [1]. In addition, they
should provide the user with the means of intuitive, effective,
and efficient control. Both aspects are increasingly addressed
with the use of various sensors, such as eye trackers [2] or
EEG devices [3]. The latter are used in BCIs (Brain-Computer
Interfaces), on which we focus in this work. These devices are
usually much simpler than the ones used for medical purposes;
they use smaller amount of electrodes, are portable and quite
affordable. Examples include Emotiv Epoc' or NeuroSky~.

One of the major BCI tasks is to correctly interpret the
brain signal, which is the result of a very complex brain activity
that is not fully understood yet. Furthermore, the acquiring
ability of an EEG device is limited and the signal contains

Uhttps://emotiv.com/epoc.php
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noise created by the electric potentials from different parts of
the body, such as eye blinks, muscle activity, or heart beats [4].

It is still not possible to recognize a specific thought in
general; however, there are three mental activities that can
be presently identified with BCI applications [3]: concentra-
tion, stimulus response, and imagined movement. Most of
the research in this area and also our work is focused on
the stimulus response. There is a technique called oddball
paradigm commonly used in the stimulus response based
applications [5]. It uses target and non-target elements shown
to a subject in a random order with about 80% probability of
the non-target and 20% for the target element. A participant is
instructed to do a mental activity such as counting occurrences
every time the target element appears. That creates event-
related potential (ERP) wave called P300, since it occurs
approximately 300 ms after the event.

In this paper, we propose an EEG signal processing method
in order to recognize P300 that adapts to a specific user.
We mainly focus on the step of channel selection, where we
propose a genetic algorithm combined with LDA (Linear Dis-
criminant Analysis) to select the best subset of the channels for
a specific user. We examine the following research questions:

1)  Can our proposed method of channel selection out-
perform the existing methods?

2) Is it possible to use our method to recognize P300
event even with a low-cost EEG device, such as
Emotiv Epoc with sufficient accuracy?

Addressing these questions, we formulated these hypothe-
ses that we evaluate in the paper:

e HI: Using a subset of channels selected by our pro-
posed method will be better than using all channels.

e  H2: The channel subset selected by our method will
outperform the fixed subset of channels based on the
domain knowledge (knowing, where the P300 event is
usually measured).

e  H3: The channel subset selected by our method will
outperform the recursive channel elimination.

e H4: Using a low-cost EEG device Emotiv Epoc, we
will be able to detect P300 event with above-random
probability.



II. RELATED WORK

As already mentioned, BCI applications can be used for
different tasks, such as emotions detection [6] or detection of
a users’ reaction to the presented stimuli. In [7], the latter
was used to create a practical application called NeuroPhone.
It connects iPhone with the low-cost EEG device Emotiv
Epoc. The application flashes six contacts from address book
of the phone to a user for 500ms each, until the P300
response is recognized, then the contact is automatically dialed.
The authors used a subset of channels based on a domain
knowledge and a lightweight Bayesian classifier to differentiate
between P300 events and blinks. They achieved a reasonable
accuracy up to 88.9% for a 100s window, while the guess
chance for six contacts is 1/6 =~ 16.67%.

The Emotiv Epoc was also used in [8] specifically for the
P300 Speller task. They proposed a classifier ensemble; first,
they performed PCA (Principal Component Analysis) projec-
tion on each channel separately and combined corresponding
dimensions into M feature vectors, where M equalled the
number of dimensions used in PCA. They trained M classifiers
on these feature vectors using both LDA (Latent Discriminant
Analysis) as well as FDA (Fisher Discriminant Analysis).
Their best achieved accuracy was 73.3% =4 23.2% averaged
over three users when using 300 ms intensification interval.

The spatial occurrence of P300 is differs for every person
like a fingerprint. This results in a need for selection of an
optimal electrodes subset. In [9], a genetic algorithm was used
to select the optimal subset. An individual was defined by four
genes representing the numbers of used channels and its fitness
value. The fitness value of an individual was computed as the
sum of the peak values of the variance between conditions
with a target present and a target absent across its channels.
The total population size was set to 10 individuals. The authors
showed that a minimal number of electrodes (four) can be used
in a P300 based BCI system without any significant accuracy
changes. That means less time needed for the signal processing
as well as less preparation needed to set up an EEG device.

A recursive channel elimination (RCE) was examined
in [10]. It finds optimal channels subset without any prior
knowledge about the subjects or a type of the task. The authors
focused on the cross-person differences in the optimal subset,
especially whether the subset chosen by RCE from multiple
person data will be equally accurate for a new user as the
subset found by RCE with his or her data only. They found out
that although the accuracy from multiple person data is lower,
the maximum error rate did not reach 17%. Nevertheless, they
conclude that the individual channel ranking is still preferable
over cross-person ranking, thus further motivating the need for
a user-adaptive channel selection method.

III. METHOD OF EEG SIGNAL PROCESSING USING
GENETIC ALGORITHM

In this paper, we propose a method for EEG signal process-
ing and further classification of P300 occurrence in response
to a presented stimulus. It consists of two phases:

1) A training phase, during which a classifier is trained
for a specific user and an optimal set of channels
(electrodes) is determined for that user; this presents
an adaptation step of the method.
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Fig. 1. An overview of the proposed method depicting the training phase.

2) A classification (or deployment) phase, in which the
classifier trained during the first phase is used to
identify P300 occurrences in the EEG signal. Only
a subset of electrodes adaptively selected in the
previous phase is used as an input to the classifier.

The first phase consists of the following steps (see Fig. 1):

1)  Artifacts removal based on ICA (Independent Com-
ponent Analysis) and a defined set of heuristics
identifying artifacts, such as blinks or muscle activity.

2)  Channel selection using a combination of genetic
algorithm and LDA classifier.

3) Dimensionality reduction using grand averaging.

4)  Classification of P300 using LDA classifier.

The second phase follows the same set of steps using
the selected set of channels and a classifier trained in the
first phase. Our contribution lies in the proposed method
of channel selection that combines optimization based on a
genetic algorithm with LDA classification and cross-validation
that are used for fitness calculation. Other steps can be found
also in the related works analysed in the previous section.

Before applying the method, we pre-process the EEG data.
We center the signal around zero by subtracting the average
value of signal based on the first two seconds of the recording
when no actvity occurs. This is applied to each channel for the
whole length of the recording. Next, we filter the signal using
the 2" order Butterworth filter leaving frequencies between
0.1Hz and 30 Hz, where P300 can be detected. Lastly, we
undersample the signal by a factor of 12 (a number that is also
used in the related works), i.e., we represent each 12 samples
by their mean. This serves as an input to our method.

A. Artifacts Removal

We use ICA (Independent Component Analysis) for re-
moval of noisy artifacts. These include different eye move-
ments, such as blinks, muscle activity or heart beats [4].
It is computationally more demanding than PCA (Principal
Component Analysis), but it is more robust and achieves in
general better results. It aims to reconstruct the original signals



in case that only their mixture is available; it is analogous to
the “coctail-party” problem, in which we record several people
speaking at once using several microphones [11]. In case of
EEG, the sources of signal are the centers in the brain as well
as the sources of the noise; the microphones are electrodes.

We have to decide, which of the identified components
represent the actual signal, and which can be attributed to the
sources of noise. We use heuristics defined in [12]:

e  The eye movements are usually recorded in the frontal
part of the brain and have low frequencies.

e The eye blinks are also recorded in the frontal part;
typical are quick large amplitudes.

e  The muscle activity is recorded mainly in the temporal
part of the brain (bottom part in the back) and its
frequency is higher than 20 Hz.

After removing the components representing the noise, the
signal is reconstructed and repaired.

B. Channel Selection

The spacial location of the P300 causes that it does not
manifest equally in all the electrodes (channels). Additionally,
this location can differ between individuals, which motives
the adaptive selection of the optimal subset of channels. In
our method, we use genetic algorithm for this purpose. In
each iteration, we have a population of individual solutions
that represent channel subsets. Each individual is represented
as a sequence of numbers that denote the selected electrodes;
e.g., sequence (15, 5, 9, 10) represents a subset of channels
15, 5, 9, and 10. The length of an individual, i.e., the number
of genes, determines the size of the channel subset.

The value of the fitness function is computed as a clas-
sification accuracy obtained by a 5-fold cross-validation of
the LDA classifier trained on the training EEG data taking
into account only the subset of electrodes represented by the
individual, the fitness of which is being assessed. The values
from the considered subset of electrodes are averaged (in the
grand averaging step) and in this form they serve as an input to
the classifier (our fitness function in this case). The advantage
of our approach over the one proposed in [9] is that we do not
consider just the importance of the individual channels, but we
test their performance in their combination.

Each generation consists of P individuals. The first one
is generated randomly, the following ones are created using
P — k one-point cross-overs of the parents. The position of a
cross-over point is randomly chosen from interval [2, 6] (i.e.,
at least two genes are transmitted from a parent). As a result
of a cross-over, it is possible that the new individual will have
multiple genes coding the same channel. When computing the
fitness, these multiple occurrences are taken into account, i.e.,
it serves as a weight of a gene (of the corresponding channel).
The best k individuals are preserved for the next generation,
thus ensuring that the maximal fitness monotonically increases
between the generations. For selecting the individuals for
cross-over, we use a weighted roulette; the fitness function is
modified to spread the values of fitness so that its higher values
increase the probability of the selection of an individual:

f = f + fmaa: - 2fmin, +1 (1)

Our proposed genetic algorithm also uses mutations; the
probability of a mutation during a cross-over is 0.4%. The use
of mutations prevents getting stuck at a local optimum and
helps find novel solutions by allowing to introduce genes that
were previously not present in the population. The algorithm
stops if the increase in the average fitness in 25 generations is
lower than the defined threshold e (stopping criterion).

Overall, the proposed method of channel selection using
genetic algorithm has six parameters that are summarized in
Tab. I together with the used values. In some cases (e.g.,
the number of genes or population size), we tested multiple
settings of the parameters; the results are presented in sec. IV.

TABLE 1. THE PARAMETERS OF THE PROPOSED METHOD OF CHANNEL
SELECTION.
parameter value
number of genes N {2, 4,6,8,12}
population size P {25, 50}
number k of individuals preserved for the next 3
generation
stopping criterion € 0.5

frequency fs¢op Of testing the stopping criterion once in 25 generations

mutation probability p 0.4%

C. Classification

We use LDA (Linear Discriminant Analysis) classifier in
the step of fitness assessment of an individual during the search
for the optimal channel subset as well as for detecting the P300
pattern in the EEG signal. The former is performed with the
training data, which are also used for training the final model.
This model is then used to classify the P300 occurrences on
the test or unknown data using the averaged values of EEG
signal from the selected subset of channels.

Because we use the oddball paradigm, i.e., we measure
the user’s reaction to the presented stimuli, we know when
the events of interest occurred. Then, it is sufficient to look
whether we detected P300 event, which should occur (if it
occurs) 100-700 ms after the stimulus.

IV. EVALUATION

The evaluation of our method consists of two parts: First,
we evaluated it on a standard data set from a BCI Competition
II* [13]. We used data set IIb* provided by the Wadsworth
Center, New York State Department of Health that contains
data collected using a P300 Speller. Second, we carried out our
own experiment using our implementation of a P300 Speller
(see Fig. 2) and the low-cost EEG device Emotiv Epoc.

The P300 Speller is a commonly used experiment to
evaluate a BCI system originally proposed in [14]. It is built
on the idea of the oddball paradigm. The user is instructed to
choose a character and then rows and columns in a typically
66 matrix of characters are randomly highlighted (see Fig. 2),
while the user is supposed to count the occurrences of his or
her chosen character. An occurrence means that a row or a
column containing the target character was highlighted. That
evokes P300 response in the acquired EEG signal.

3http://www.bbci.de/competition/ii
“http://www.bbci.de/competition/ii/albany_desc/albany_desc_ii.html
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Fig. 2. Our implementation of P300 Speller. A row or a column are alternately
highlighted. In this case, the user is supposed to count the number of times
the character A is highlighted.

The task of a BCI system is in this case to correctly
identify a row and a column, the highlighting of which evoked
a P300 response. The correct character is then determined as
an intersection of the two. Typically, several blocks of trials
are used for the system to determine a correct character (in
each trial, each row and column is highlighted exactly once,
only the order is varied). The number of required trials needed
for a system to reliably determine the character can be used
to compare the competing BCI systems.

In case of a Wadsworth BCI data set, the rows and columns
were highlighted for 100 ms with 75 ms blank intervals be-
tween them. The data were collected from 64 channels, using
240 Hz sampling rate. It contains 42 target characters (11 in the
training set and 31 in the testing set). For each target character,
the data set contains 15 sets of 12 intensifications (highlighting
of a row or column) organized in a block in the randomized
order. That means 180 intensifications for a target character.

In case of our experiment with the P300 Speller and Emotiv
Epoc, we collected data from 10 participants in the User
Experience and Interaction Research Center® at our university.
The device has 14 electrodes (channels). We used 5 randomly
chosen words consisting of 20 characters in the training phase
and two words consisting 8 characters in the testing phase
minimizing the number of repeating characters in the collected
sets. We slightly modified the time during which a row or a
column was highlighted (we used 93.75 ms) as well as the time
of blank intervals (using 78.125ms). The reason for this was
a different sampling rate of Emotiv Epoc (128 Hz); we wanted
to have uninterrupted samples within the chosen window.

A. Results on the Standard Data Set

First, we removed artifacts from the EEG signal using ICA
(Independent Component Analysis) and a set of heuristics de-
scribed in sec. III-A. Our goal was to identify two components

Shttp:/fuxi.sk

of P300, namely P3a and P3b [15]. The former manifests at
the frontal part of the brain, while the latter at the posterior
part. Fig. 3a depicts the P3a component identified in the signal.
It is contrasted with the noise in the form of blinks that we
aim to remove from the signal (see Fig. 3b). Fig. 4 shows the
reconstructed signal after removing the noise components.

Next, we tested the influence of population size P (25 vs.
50 individuals) on the performance of the genetic algorithm.
We can see in Fig. 5 that in both cases the search for
the optimal solution progresses with approximately the same
speed; the risk with a smaller population is in initialization
of the first generation that—in case of insufficient variety in
the gene pool—can negatively influence the capability of the
algorithm to find the optimal solution.

As to the number of genes N, we tested different values
when decreasing the number of intensification blocks used for
determining the character, the user thinks of. We can see that
we can achieve 100% accuracy of determining the correct
character in the test test when using the maximum number
of 15 blocks with as few as two genes (representing the EEG
channels); see Tab. II. The accuracy drops to 90.32% when
using 10 blocks and to 83.87% when using only five blocks
and the number of four genes. Since this setting (i.e., having
four genes) achieved the best results, we used it in the rest of
the experiments presented in this section.

TABLE II. THE COMPARISON OF THE RESULTS OF THE PROPOSED
GENETIC ALGORITHM W.R.T. THE NUMBER OF GENES N AND THE
NUMBER OF INTENSIFICATION BLOCKS.

#Blocks | GA (2) GA 4 GA (6) GA 8) | GA (12)
15 100% 100% 100% 100% 100%
10 90.32% | 90.32% | 90.32% | 90.32% 90.32%
5 80.64% 83.87% 80.64% 80.64% 80.64%

We compared our proposed method of channel selection
using a genetic algorithm with three existing methods: using
all channels, using a subset of channels selected based on
the domain knowledge, and with the method of recursive
elimination that in each step eliminates electrode which has
the least contribution to the solution. Since we tested two
different subsets of channels based on the domain knowl-
edge (channels {C'Ps, CP3,CP,,CPy;,CP,, P3, P, P7} and
channels {CPs,CPy,CP,, PO7, POz, F5, F>,Cy} based on
the standard channel coding), we had altogether four solutions
to compare with our method. The results are shown in Tab. III.

We can see that our proposed algorithm outperformed all
the compared variants, thus confirming hypotheses H1-H3.
The advantage over recursive elimination showed to be in the
fact that our algorithm can consider some of the channels
multiple times as well as that it in each step evaluates the
solution as a whole, while the recursive elimination uses the
greedy approach that can prevent it to find the optimal solution.

B. Results on the Collected Data Set

The data collected with Emotiv Epoc contained more noise
that the standard data set used in the previous section. We had
to filter out the noise components from the signal manually
based on the spatial distribution of active electrodes, since
the proposed heuristics turned out to be difficult to apply
automatically. We also halved the number of samples used
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Fig. 4. The difference between the reconstructed (cleaned) signal (in red)
and the original one (in blue) shown for the set of eight frontal electrodes.

TABLE III. THE COMPARISON OF THE RESULTS OF THE PROPOSED
GENETIC ALGORITHM WITH FOUR GENES (GA) WITH ALL CHANNELS
(ALL), THE SELECTED SUBSETS OF CHANNELS (S1 AND S2), AND WITH
THE RECURSIVE CHANNEL ELIMINATION (RCE) W.R.T. THE NUMBER OF
INTENSIFICATION BLOCKS.

#Blocks GA All S1 S2 RCE
15 100% 96.77% 64.51% | 96.77% 100%
10 90.32% 80.64% 51.61% 80.64% | 87.09%
5 83.87% | 61.29% | 41.93% 61.29% | 77.41%

for undersampling, i.e., we used factor of 6 instead of 12 (see
sec. III).

We evaluated not only the accuracy of determining the
correct character, but also the accuracy of determining the
correct highlighted row or a column. The collected data set
contains 8 characters in the training set, to which corresponds

16 highlighted rows and columns. The results for all channels
are shown in Tab. IV. We can see that the accuracies are
rather low, although better than random (which is 2.78% for
determining a correct character out of 36); therefore, we can
confirm also the last hypothesis H4.

We also tried to select a subset of electrodes using our and
other methods, but this has generally worsened the results. We
attribute the poor results to the quality of the signal obtained
from the Emotiv Epoc device and also to the fact that the
arrangement of the electrodes on the scalp does not sufficiently
cover locations, in which the P300 manifests the most strongly.
The reason might be also a lower number of training samples
and a shorter intensification interval than usually used when
working with Emotiv Epoc [7], [8].

TABLE IV. THE RESULTS OF DETERMINING THE CORRECT
CHARACTER OR ITS CORRESPONDING ROW OR COLUMN ON THE DATA
COLLECTED USING EMOTIV EPOC.

Accuracy Mean Std. deviation
Character 19.44% 11.02%
Row or a column 37.52% 13.26%

V. CONCLUSION

In the paper, we proposed a method of EEG signal pro-
cessing focusing on the user-adaptive channel selection. Our
contribution lies in the combination of a genetic algorithm
with LDA classifier that is used for assessing the fitness
of an individual solution. The selected representation of an
individual allows to select a channel multiple times, which
serves as a simple weighting mechanism. We demonstrated on
a standard data set that our method outperforms the existing
solutions based on the recursive elimination or the domain
expertise. We also achieved better results than in [9]; however,
since their approach was evaluated on a different data set, it
cannot be directly compared and further evaluation is needed.
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Although we evaluated our approach on a P300 Speller
problem, it could be also used for other classification problems
pertinent to the intelligent user interfaces domain that can
benefit from selecting an optimal set of electrodes, such as
emotions detection or reading analysis. However, the evalua-
tion of the applicability of the proposed approach on a wider
range of problems remains a future work.

Additionally, we evaluated the suitability of the low-cost
EEG device Emotiv Epoc for detection of the event-related
potentials. The results were not very satisfactory; although the
achieved accuracy was above random, the noise in the signal
and the arrangement of electrodes resulted in a high variation
rendering the classification far from reliable. Although we
could have enlarged the training set and the intensification
time interval, the practical applicability of such a solution is
questionable. This suggest that a more reliable device should
be used in the future; Open BCI® initiative seems promising
in this regard.
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