
Slovenská technická univerzita v Bratislave
Fakulta Informatiky a Informačných Technológii

Študijný program: Softvérové inžinierstvo

Bc. Michal Bebjak

Aspektovo-Orientovaná Implementácia
Zmien vo Webových Aplikáciách

Diplomová práca

Vedúci diplomovej práce: Ing. Valentino Vranić, PhD.

December 2007

Slovak University of Technology in Bratislava
Faculty of Informatics and Information Technologies

Study program: Software Engineering

Bc. Michal Bebjak

Aspect-Oriented Change
Implementation in Web Applications

Master’s Thesis

Supervisor: Ing. Valentino Vranić, PhD.

December 2007

Ďakujem vedúcemu mojej diplomovej práce Valentinovi Vranićovi za jeho pod-
poru a cenné pripomienky.

Čestne prehlasujem, že som diplomovú prácu vypracoval samostatne.

ANOTÁCIA

Slovenská technická univerzita v Bratislave
FAKULTA INFORMATIKY A INFORMAČNÝCH TECHNOLÓGIÍ
Študijný program: Softvérové inžinierstvo
Autor: Bc. Michal Bebjak
Diplomová práca: Aspektovo-orientovaná implementácia zmien vo webových
aplikáciách
Vedenie diplomovej práce: Ing. Valentino Vranić, PhD.
december, 2007

V tejto práci bola analyzovaná pripravenosť webových aplikácii na zmeny vyja-
drené pomocou prostriedkov aspektovo-orientovaného programovania. Na zák-
lade tejto analýzy bol vypracovaný prístup implementácie zmien pre webové
aplikácie, v ktorom sú zmeny vyjadrené pomocou aspektov a sú aplikované ako
inštancie všobecných apektovo-orientovaných typov zmien. V práci je identifiko-
vaných viacero všeobecných typov zmien, ktoré sa často vyskytujú pri vývoji
a úpravách podľa priania zákazníka, a tiež vzťahy medzi týmito typmi zmien
a všeobecnými aspektovo-orientovanými typmi zmien. Navrhnutý prístup bol
overený pomocou implemetácie viacerých zmien a výsledky ukazujú, že takéto
zmeny je možné vyjadriť pomocou aspektov. Kvôli ukázaniu možnosti imple-
mentácie zmien aj v menej expresívnych aspektovo-orientovaných jazykoch a
rámcoch bol predstavený rámec Seasar. Pre tento rámec boli navrhnuté pos-
tupy implementácie pokročilejších aspektovo-orientovaných konštrukcií.

ANNOTATION

Slovak University of Technology Bratislava
FACULTY OF INFORMATICS AND INFORMATION TECHNOLOGIES
Degree Course: SOFTWARE ENGINEERING
Author: Bc. Michal Bebjak
Thesis: Aspect-Oriented Change Implementation in Web Applications
Supervisor: Ing. Valentino Vranić, PhD.
2007, December

In this thesis, the possibility of expressing changes in web applications by means
of aspect-oriented programming was analyzed. On the basis of this analysis,
an approach to web application evolution was introduced. In this approach,
changes are represented as aspects and applied as instantiations of generic
aspect-oriented change types. Several change types which can occur in web
applications as evolution or customization steps and correspondence between
these change types and generic aspect-oriented change types were identified.
This approach was evaluated by implementing several changes and results of
this evaluation show that such changes can be managed as aspects. To show
that proposed approach to change implementation is not limited to AspectJ and
can be used also in less expressive aspect-oriented languages or frameworks, the
Seasar framework was introduced and techniques for implementing advanced
aspect-oriented constructs in this framework were developed.

NAMIESTO TEJTO STRANY VLOZIT ZADANIE
original resp. kopia

Contents

1 Introduction 1

2 Aspect-Oriented Programming 2
2.1 Main Concepts of Aspect-Oriented Programming 2

2.1.1 Join points . 2
2.1.2 Pointcuts . 2
2.1.3 Advices . 3

2.2 The AspectJ Approach to Aspect-Oriented Programming 3
2.2.1 Join Points . 3
2.2.2 Pointcuts . 4
2.2.3 Advices . 4
2.2.4 Intertype Declaratiosn . 4
2.2.5 Compile-time Declaration 4

2.3 Aspect-oriented Languages . 4

3 Change Control 5
3.1 Change Categorization . 5

3.1.1 Bug Fixes . 5
3.1.2 Change Requests . 6
3.1.3 Customizations . 6

3.2 Comparing Object-oriented and Aspect-oriented Approach to Change
Control . 6

3.3 Capability of Web Applications for Changes 8
3.3.1 Unstructured Applications 8
3.3.2 Structured Applications 10
3.3.3 Domain Layer . 10
3.3.4 Presentation Layer . 11
3.3.5 Persistence Layer . 12

4 Adapting Affiliate Tracking Software: A Change Scenario 14

5 Aspect-Oriented Change Realization 16
5.1 Class Exchange . 17
5.2 Method Substitution . 17

1

CONTENTS 2

5.3 Enumeration Modification . 18
5.4 Additional Parameter Checking 19
5.5 Additional Return Value Checking/Modification 19
5.6 Performing Action After Event 20
5.7 Logging . 20

6 Applying Changes to Web Applications 21
6.1 Integration Changes . 21
6.2 Grid Display Changes . 22
6.3 Input Form Changes . 23
6.4 Introducing User Rights Management 24
6.5 User Interface Restriction . 24
6.6 Introducing a Resource Backup 25

7 Aspect-Oriented Change Realization Framework 26
7.1 Model of Change Realization Framework 26
7.2 Implementing Changes of Changes 28

7.2.1 Multi-Layer Model . 28
7.2.2 Two-Layer Model . 29

8 The Approach Evaluation 30
8.1 YonBan . 30
8.2 Implemented Changes . 30

8.2.1 Telephone Number Validator 31
8.2.2 Telephone Number Formatter 32
8.2.3 Project Registration Statistics 33
8.2.4 Project Registration Constraint 34
8.2.5 Exception Logging . 34
8.2.6 Name Formatter . 35

8.3 Conclusion . 35

9 The Seasar Framework for Aspect-Oriented Programming in
PHP 37
9.1 The Seasar Framework Overview 37

9.1.1 Seasar Aspect-Oriented Programming Compared to the
AspectJ Approach . 38

9.1.2 Seasar Basics . 38
9.2 Implementing More Complex Aspect-Oriented Constructs in Seasar 40

10 Conclusions and Further Work 42

A Implementation of YonBan changes 45
A.1 Telephone Number Validator . 45

A.1.1 Aspect . 45
A.1.2 Validator Class . 46

A.2 Telephone Number Formatter . 46
A.3 Project Registration Statistics . 47

CONTENTS 3

A.4 Project Registration Constraint 47
A.5 Exception Logging . 48
A.6 Name Formatter . 48

B Attached CD-ROM Contents 49

C Evolution of Web Applications with Aspect-Oriented Design
Patterns 50

Chapter 1

Introduction

Changes are inseparable part of software developement. Changes take place in
the process of developement as well as in the software maintenance. The goal of
change control is to adapt the application to the everchanging user requirements
and operating enviroment.

Huge costs and low speed of implementation are characteristic to the change
implementation. Often, change implementation implies a redesign of the whole
system, which is very cost inefective. The necessity of improving the software
adaptability to changes is fairly evident.

Software adaptibility can be improved by employing the aspect-oriented pro-
gramming. Aspect-oriented programming allows us to express changes as as-
pects that are being applied to the system. This possibility is investigated in this
work. The stress is given on identifying and applying changes typical, though
not limited to, generic web applications. Generic web applications have to be
able to dynamically adapt themselves to the changing enviroment, integration
with third party systems, and customization.

The rest of the work is structured as follows. Chapter 2 presents base con-
cepts of the Aspect-oriented programming. Chapter 3 introduces the problem
of change control, compares object-oriented and aspect-oriented approach to
change control, and analysis web application capability for changes. Chapter 4
establishes a scenario of changes in the process of adapting affiliate tracking soft-
ware used throughout next Chapters of this work. Chapter 5 proposes aspect-
oriented patterns and program schemes that can be used to implement these
changes. Chapter 6 identifies several interesting change types in this scenario
valid, though not limited to, for the whole range of web applications. Chap-
ter 7 envisions an aspect-oriented change realization framework and puts the
identified change types into the context of it. Chapter 8 evaluates the approach
proposed by the framework. Chapter 9 introduces Seasar framework which pro-
vides aspect-oriented programming for PHP language and shows that proposed
approach can be implemented also in less expressive aspect-oriented languages
and frameworks. Chapter 10 conclusions and directions of further work.

1

Chapter 2

Aspect-Oriented
Programming

The goal of aspect-oriented programming is to make it possible to deal with
crosscutting concerns of a system’s behavior as separately as possible [8]. This
is achieved by allowing programmers to first express each of the system concerns
in a separate and natural form and by their subsequent automatic merging in a
process called weaving.

2.1 Main Concepts of Aspect-Oriented Program-
ming

Main concept in aspect-oriented programming is aspect [4]. An aspect is made
of a pointcut selecting some join points, an advice (a code to execute).

2.1.1 Join points
The join point represents a language construction to which an advice can be
connected. Join points can be function calls, variable assigments. . . Aspect-
oriented languages usually support only subset of all possible join points.

2.1.2 Pointcuts
An aspect selects a join point by matching it with pointcut pattern. The pattern
can be a term with variables matching an instruction, disjunction, conjunction,
and negation of patterns. Control flow pointcut cflow(B) is a pointcut which in-
tuitively represents all the join points which are in the control flow of a method B
including the join point represented by B. cflowbelow(B) is similar but excludes
the the join point represented by B.

2

CHAPTER 2. ASPECT-ORIENTED PROGRAMMING 3

2.1.3 Advices
Advice represents code that should be executed and type that specifies when it
should be executed. Advice type can be before, after, and around.

Before advice When a before advice matches the current instruction, it is
executed before this instruction.

After advice The after advice is executed after the instruction matched by
pointcut has completed. To make sense, it should be applied to instructions
which perform sequencing. If the instruction does not perform sequencing (e.g.
it can throw exceptions), then the advice might not be executed. If the in-
struction is a procedure call, the advice will be executed when the procedure
returns.

Around advice In order to accommodate around advice, the aspect-oriented
language must contain an additional instruction proceed() which can be used in
the code of an around advice. Typically, an around aspect starts by executing its
code before the current instruction. The advice code may proceed by executing
the instruction matched by the around advice using the instruction proceed().
An advice may also terminate without executing the current instruction.

2.2 The AspectJ Approach to Aspect-Oriented
Programming

AspectJ is a general-purpose, aspect-oriented extension to the Java program-
ming language [10]. It is considered to be a model for other aspect-oriented
languages.

AspectJ implements all main aspect-oriented concepts described in Section
2.1.

2.2.1 Join Points
Avalaible join points in AspectJ are:

• method join points

• constructor join points

• field access join points

• exception handler execution join points

• class initialization join points

• object initialization join points

CHAPTER 2. ASPECT-ORIENTED PROGRAMMING 4

• object pre-initialization join points

• advice execution join points

2.2.2 Pointcuts
Pointcuts in AspectJ can select a join point that is a call/execution of a method-
/constructor, and they can also capture the method’s context, such as the target
object on which the method was called and the method’s arguments.

2.2.3 Advices
The advices in the AspectJ can be of before, after, and around type.

2.2.4 Intertype Declaratiosn
The intertype declaration is a static crosscutting instruction that introduces a
changes to the classes, interfaces, and aspects of the system. It makes static
changes to the modules that do not directly affect their behavior. For example,
it can add a method or field to a class.

2.2.5 Compile-time Declaration
The compile-time declaration is a static crosscutting instruction that allows us
to add compile-time warnings and errors upon detecting certain usage patterns.

2.3 Aspect-oriented Languages
Aspect-oriented programming is not intended to replace object-oriented pro-
gramming. It extends object-oriented programming. There are many aspect-
oriented extensions of existing mainly object-oriented languages. In general
aspect-oriented programming can be implemented as a language extension or as
a framework. AspectJ represents a language extension. It defines new language
constructs which used to express aspects. If the aspect-oriented programming
is done by using framework, no new language constructs need to be added to
the base language. Pointcuts are usually specified in external configuration files
or anotations, and aspects are represented as regular classes.

Chapter 3

Change Control

The level of change control provided by existing tools varies significantly, but
most of these tools build up on version models. A version model defines enti-
ties to be versioned, version identification, as well as operations for retrieving
versions and constructing new versions [3].The version models can be classified
into state-based and change-based. State-based models usually describe entities
in term of revisions and variants. Change in state-based model is described by
difference between two versions. When new version is created, change is merged
with all previous versions. Change-based models consider the change as a entity
to be versioned. A version is created by applying all changes to the baseline.
This allows to combine changes freely and simply make different versions by
applying only selected changes. This approach is similar to aproach proposed
in this report. Changes implemented using aspects can be modularized and
made pluggable and reapplicable. Section 3.1 explains the categorization of
changes and analysis possibilities of their implementation using aspect-oriented
approach. Section 3.2 compares aspect-oriented and object-oriented approach
to change implementation. Finally section 3.3 analyzes capability of web appli-
cations for changes.

3.1 Change Categorization
Changes can be divided into bug fixes, change requests, and customizations.

3.1.1 Bug Fixes
Bug fixes should not be implemented using apsect-oriented programming. It
would have very bad effect on core source code. Change requests should be
applied to healthy and working core. If the bug fixes were done using aspect-
oriented programming, soon there would be a huge amount of changes that need
to be applied to all users. No one wants a buggy system and if the change is
to be applied to all system, then it is better to implement it right to the core

5

CHAPTER 3. CHANGE CONTROL 6

of the system and not as some external patch. Thus the bug fixes shouldn’t be
imlemented using aspect-oriented programming.

3.1.2 Change Requests
Change requests can be divided to two main categories:

1. changes applicable to all users

2. changes applicable to single user or group of users

If a change should be applicable to all users it can be implemented in two
ways. If it has a character of cross cutting concern it should be implemented us-
ing aspect-oriented programming because aspect-oriented programming is better
suitable for cross-cutting concerns. Aspect-oriented programming was initially
intended to capture cross-cutting concers.

If the change affects only single class it could be implemented using object-
oriented programming. But if the change is implemented using object-oriented
programming, it can not be later easily removed from system. It is also difficult
to distinguish if the change is really applicable to all users. Therefore this type of
change should be implemented using aspect-oriented programmming too, even
if this implementation may not be so efficient as object-oriented programming
implementation.

If a change is applicable to single or group of users it should always be
implemented using aspect-oriented programmming, because we want to be able
to apply or remove this change from system easily.

3.1.3 Customizations
It is almost impossible to create an application that will match the requirements
of all users. In order to satisfy most of the customers it is welcomed if the
application can be easily customized. Most of the customers won’t mind paying
for customization if it can put the application nearer to their requirements and
expectations.

The problem of customization is typical for generic applications. Users want
to integrate application with their systems, modify it . . . If some customization
is developed for one user, then it will be great if the same customization could be
sold to other users which may eventually need it to. Some users may also want
to have more customizations made on their application. So all customizations
should be implemented so that they can be used on all systems and can cooperate
with other customizations.

3.2 Comparing Object-oriented and Aspect-oriented
Approach to Change Control

Initially, aspect-oriented programming was designed to express cross-cutting
concerns. Some recent works suggest that aspects can be also used to express

CHAPTER 3. CHANGE CONTROL 7

changes [5, 2, 13, 9]. In this chapter aspect-oriented and object-oriented ap-
proach is compared.

A case study by Papapetrou and Papadopoulos [13] compares aspect-oriented
programming and object-oriented programming with respect to change control.
Two changes to the existing web crawling system were implemented . Changes
were implemented by two independent teams. Number of lines of code added,
number of places to which code was added, and number of files to which code
was added metric was used to compare both approaches.

Four changes were implemented and compared. These changes were logging,
DNS monitoring, database monitoring, database optimizer.

change lines of code places to add files to add
OOP AOP OOP AOP OOP AOP

logging 126 19 73 1 8 1
DNS monitoring 15 40 3 1 1 1
database monitoring 15 40 3 1 1 1
database optimizer 45 45 3 1 1 1

Table 3.1: Comparison of aspect-oriented and object-oriented approach [13]

It can be seen that changes implemented using aspect-oriented programming
are much better isolated than the ones using object-oriented programming. Log-
ging is a great example for aspect-oriented programming. When implemented
using object-oriented programming 126 lines of code needed to be added to 73
places in 8 different files. This is huge amount of work especially when we need
to make modifications to these changes. On the other hand when implemented
using aspect-oriented programming 19 lines of code were added to one place
in one file. The main benefit of logging using aspect-oriented programming is
that a whole change is located in one file. When we decide to remove logging
from system, we need to remove just one file. On the other hand, when using
object-oriented programming wee need to modify 8 files and look at 73 places.

Not all changes can be implemented so efficiently using aspect-oriented pro-
gramming. Database monitoring and optimizer required almost 3 times more
lines of code when implemented using aspect-oriented programming. But the
benefit of change isolation still remains. object-oriented programming version
modified 3 places in the system while aspect-oriented programming modified
just 1.

Results similar to [13] can be found also in [9]. In [9] aspect-oriented pro-
gramming and object-oriented programming approach was also investigated and
lines of code together with number of classes changed was used as metrics.

In this case, the difference between lines of code changed using aspect-
oriented programming and object-oriented programming is not so significant.
In some cases change implemented by aspect-oriented programming required
more lines of code than object-oriented programming version. But the benefit

CHAPTER 3. CHANGE CONTROL 8

change lines of code classes changed
OOP AOP OOP AOP

add spam checking 36 44 (in aspect) 2 0 (aspect changed)
replace spam checking 15 15 (in aspect) 1 0 (aspect changed)
replace logging 184 162 (in aspect) 12 0 (aspect changed)

Table 3.2: Comparison of aspect-oriented and object-oriented approach [9]

of change isolation is visible. In all cases, just the aspect had to be modified.
When object-oriented programming was used 1–12 classes were modifed.

Works[13, 9] stress out that changes implemented using aspect-oriented pro-
gramming are very well isolated and separated from existing system. This has
many benefits such as

• Changes can be easily implemented or removed from system.

• Further modification to changes are made just on one place. This reduces
the problem of forgetting to implement modification on some place.

• It is not neccessary to explore whole system to understand a change.

• Change can be easily reviewed, monitored and tracked.

3.3 Capability of Web Applications for Changes
Web applications can be classified as structured and unstructured applications.
Capability for changes of these two groups is discussed in Sections 3.3.1 and
3.3.2, respectively.

3.3.1 Unstructured Applications
Unstructured applications are usually small-sized applications. Application
logic is tangled with the presentation logic and procedural paradigm is usu-
ally used to implement this type of applications. A source code for this type of
applications usually looks like this:

<html>
...
...
<?php

if ($_REQUEST[’action’] == ’action1’) {
// do some stuff
...
// usually many LOC

CHAPTER 3. CHANGE CONTROL 9

} elseif ($_REQUEST[’action’] == ’action2’) {
// do some other stuff
...
//

}
?>
...
...
Username: <?=$user[’username’]?>
...
...
</html>

To implement changes for unstructured applications is very difficult. Change
in one place can cause problems elsewhere in application, source code is poorly
arranged, so it is difficult even to find a place where the change should be
applied.

For unstructured applications it is also very difficult to use aspect-oriented
programming for change implementation. The main reason is that the join
points are hard to localize and are very unstable.

Example. This example shows code snippet that inserts new user into table:

...
// some checks
...
$sql = ‘insert into users (uname, name) values (’$uname’, ’$name’)‘;
$ret = mysql_query($sql);
...
stuff that should happen after user signup
...

Required change. If user haven’t specified his name, then the name should
be set to username.

Solution. We need to add following code before command that creates the
SQL statement

if ($name == ’’) $name = $uname;

Problems. If we want to implement this change, we have to specify an advice
body and pointcut. In this case, advice body is clear (line of code above). The
problem is to specify a pointcut. In order for the pointcut to be precise enough,
we need to use lines of code as join points. Otherwise we wouldn’t be able
to implement the required change. Line of code join points are very unstable.
They are specified by the line number. If someone changes the source code
before line that is adviced, line number changes, and change will no longer work
as it should.

CHAPTER 3. CHANGE CONTROL 10

3.3.2 Structured Applications
All applications should be implemented in some structured way. Especially
bigger sized applications. Object-oriented paradigm is usually used for this
type of applications. Structured applications are often implement by means of
model-view-controller pattern and can be divided into three layers:

1. Domain layer (model)

2. Presentation layer (view and controller)

3. Persistence layer

3.3.3 Domain Layer
Domain layer is responsible for the application logic (often called bussiness
logic). This layer is usually implemented using object-oriented programming.
This is a good assumption for change control using aspect-oriented program-
ming. Changes can be applied to class methods. The join points in this case
are method calls.

To accurately specify a pointcut of change, there has to be enough join points
in model layer. This can be ensured by fine-grained granularity of the domain
layer. Therefore no method should be longer than aproximately 20 lines. If a
method is longer, it can be usually divided into multiple methods. This fine-
grained granularity is also good for code limpidity.

Example. Example of coarse-grained source code follows:

...
function addUser($uname, $name) {

...
$sql = ‘insert into users ...‘;
mysql_query($sql);
...
if ($signupBonus) {

...
$sql = ’insert into provisions ...’;
mysql_query($sql);
...

}
}
...

Required change. Send an email notification to a user when he receives a
signup bonus.

CHAPTER 3. CHANGE CONTROL 11

Problem. When the code is coarse-grainedm, we can not specify the pointcut
precisely enough. In this case we would need to execute the advice after the
method addUser() is executed. In the advice body, we need to check again
whether the signup bonus should be given and whether it was finally given to
user.

Example. Example of fine-grained source code follows:

...
function saveUserToDb(...) {

...
$sql = ‘insert into users ...‘;
mysql_query($sql);
...

}
...
function addSignupBonusToUser(...) {

...
$sql = ’insert into provisions ...’;
mysql_query($sql);
...
return true;

}
...
function addUser($uname, $name) {

$this−>saveUserToDb(...);
if ($signupBonus) {

$this−>addSignupBonusToUser();
}

}
...

Required change. The same as in previous example.

Problem: In this case we can specify the pointcut much more precisely. We
need to execute the advice after the method addSignupBonusToUser() is exe-
cuted. In the advice body we don’t need to check if the signup bonus should
be given. If the method addSignupBonusToUser() returns true, we can send an
email notification.

There are more ways to specify pointcut. If the application is fine-grained,
well documented, and modeled, pointcuts can be specified using UML diagrams.
This approach was introduced by Gazzola et al. [2]. Pointcuts are defined using
UML statechart diagram but activity diagrams can be used too.

3.3.4 Presentation Layer
The presentiation layer is responsible for presentation of data stored in applica-
tions. Presentation layer for web applictions is usually written in HTML, but

CHAPTER 3. CHANGE CONTROL 12

rich web applications based on JavaScript and Ajax are getting more popular
and presentation layer of Ajax applications is usually component based.

Simple HTML. No visual components are used in presentation layer written
in simple HTML. Tables, forms . . . are generated in HTML templates.
Example:

...
Users list

<table>
<tr><th>username</th><th>name</th></tr>
<? foreach($users as $user) { ?>

<tr><td><?=$user[’uname’]?></td>
<td><?=$user[’name’]?></td></tr>

<? } ?>
</table>
...

This type of the presentation layer is not prepared for changes. If we want
to add column to the users table, we have to modify the original source code.
We can’t use aspect-oriented programming because there are no join points to
be addressed by the pointcut of a change.

Component based presentation layer. Visual components are used for ta-
bles, forms . . . in component based presentation layer.
We can see Table component generated by generate() method in following ex-
ample:

...
Users list

<?

$table = new Table($users);
$table−>generate();

?>
...

If we want to add a new column, we can do that in the Domain layer. We
can change the way the table is generated by applying change to the Table class,
too. Component based presentation layer is well prepared for changes.

A similar component based approach can be also used for rich web applica-
tions based on JavaScript.

3.3.5 Persistence Layer
The persistence layer is responsible for storing application data. Relational
databases are usually used for this purpose. Often, some object-relational map-
ping layer is used to communicate with database.

If the change that has to be implemented requires no database changes, we
don’t need to worry about the persistence layer. But some changes will require

CHAPTER 3. CHANGE CONTROL 13

the database changes. The database changes required by the change can not
affect functionality of other system parts. Typical database changes are:

• adding column to existing table

• new table

A new table in the system shouldn’t influence other parts of the system. We
just need to ensure that:

• a requested table is created before the is introduced

• a created table is removed when the change is removed

A new column added to the existing table could cause problems if application
uses the select commands that select all colums in table. Change could use a
new table instead of a new column. This new table will contain the foreign key
to the modified table and a new column. This solution shouldn’t influence the
rest of system as it doesn’t modify existing tables.

Chapter 4

Adapting Affiliate Tracking
Software: A Change Scenario

In the proposed approach, scenario of a web application will be employed
throughout the rest of the thesis which undergoes a lively evolution: affiliate
tracking software.1 Affiliate tracking software is used to support the so-called
affiliate marketing [7]. Affiliate marketing is a method of advertising web busi-
nesses (merchants) on third party web sites. The owners of the advertising web
sites are called affiliates. They are being rewarded for each visitor, subscriber,
sale, and so on. Therefore, the main functions of such affiliate tracking software
is to maintain affiliates, compensation schemes for affiliates, and integration of
the advertising campaigns and associated scripts with the affiliates web sites.

A simplified schema of affiliate marketing is depicted in Figure 4.1. A cus-
tomer visits an affiliate’s page which refers him to the merchant page. When
he buys something from the merchant, goods are sent to the customer and the
provision is given to the affiliate who referred the sale.

A general affiliate tracking software enables to manage affiliates, track sales
referred by these affiliates, and compute provisions for referred sales. This
software is also able to send notifications about new sales, signed up affiliates,
etc.

Consider such a general affiliate tracking software is bought by a merchant
that runs an online music shop to support his business by building affiliate
marketing. A successful adaptation of the general affiliate tracking software
requires a series of changes to be applied. First, the affiliate tracking software
has to be integrated with the shopping cart, so it can track sales. General
integration methods and integration methods for most popular kinds of shops
(including ours) are already implemented, so we do not need to implement this.

To motivate and keep affiliates informed, we want to send them e-mails
about news, new marketing methods, etc. To ensure e-mail delivery, we want to

1This chapter is adapted from parts of my paper Evolution of Web Applications with
Aspect-Oriented Design Patterns [1] to which my contribution is approximately 60 %

14

CHAPTER 4. ADAPTING AFFILIATE TRACKING SOFTWARE: A CHANGE SCENARIO15

Customer

Affiliate A

Affiliate B

 Affiliate tracking

Merchant
Provision

Goods

/ 1. Click advertisement

/ 2. Redirect

/ 3.2 Calculate Provision

/ 4.2 Pay Provision

/ 3.1. Package Goods/ 4.1 Deliver Goods

Figure 4.1: Affiliate marketing scheme.

use two SMTP servers: one as the main server, and the other one as a backup
server. The affiliate tracking software does not implement this feature.

The merchant also wants to integrate the affiliate tracking software with
the third party newsletter which the he uses and which fits his needs. Every
affiliate should be a member of the newsletter. Different merchant has different
information needs. For example when selling music, it is important for to know
a genre of the music which is promoted by his affiliates. We need to add the
genre field to the generic affiliate signup form and his profile screen to acquire
the information about the genre to be promoted at different affiliate web sites.
To display it, we need to modify the affiliate table of the merchant panel so it
displays genre in a new column. The marketing is managemd by several co-
workers with different roles. Therefore, the database of the tracking software
has to be updated with an administrator account with limited permissions.
A limited administrator should not be able to decline or delete affiliates, nor
modify campaigns and banners.

Chapter 5

Aspect-Oriented Change
Realization

Changes can be successfully coped with using aspect-oriented programming
techniques.1 Here we will present selected aspect-oriented programming tech-
niques that can be used to realize some common changes. Some of these tech-
niques may actually be recognized as established aspect-oriented design pat-
terns. As the objective of this thesis is not to search for not yet identified
aspect-oriented patterns, we consider other cases as pattern-like code schemes
appropriate to implement changes. We leave exploration of their potential as
aspect-oriented design patterns for further work.

In the AspectJ style of aspect-oriented programming, the crosscutting con-
cerns are captured in units called aspects that may be seen as playing the role
the classes play in object-orientated programming. However, at runtime, the
aspects are automatically instantiated by which they start to affect the code
they are bound to. Unlike classes, whose runtime manifestations (i.e., objects)
are called differently, runtime aspects are called simply aspects.

In AspectJ, aspects may contain fields and methods much the same way
usual Java classes do, but what makes possible for them to affect other code are
genuine aspect-oriented constructs, namely: pointcuts, which specify the places
in the code to be affected, advices, which implement the additional behavior
before, after, or instead of the captured join point,2 and inter-type declara-
tions, which enable introduction of new members into existing types, as well
as introduction of compile warnings and errors. The complete presentation of
aspect-oriented programming in AspectJ is not the intent of this thesis, so we
will limit our explanation to the necessary extent put in the context of change
implementation.

1This chapter is adapted from parts of my paper Evolution of Web Applications with
Aspect-Oriented Design Patterns [1] to which my contribution is approximately 60 %

2Join points represent well-defined places in the program execution.

16

CHAPTER 5. ASPECT-ORIENTED CHANGE REALIZATION 17

5.1 Class Exchange
Sometimes, a class has to be exchanged with another one either in the whole
application, or in a part of it. This may be achieved by employing the Cuckoo’s
Egg design pattern [12]. A general code scheme is as follows:

public aspect ExchangeClass {
public pointcut exhangedClassConstructor(): call(ExchangedClass.new(..);

Object around(): exhangedClassConstructor() {
if (...) {

return new ExchangingClass();
} else {

return proceed();
}

}
}

The exhangedClassConstructor() is a pointcut that captures the ExchangedClass
constructor calls using the call() primitive pointcut. The around advice cap-
tures these calls and prevents the ExchangedClass instance from being created.
Instead, it decides which if the class should be exchanged and returns instants
of original or exchanging class ExchangingClass. In general, it is conditional or
unconditional returning of an instance of the ExchangingClass. For this to be
possible, the ExchangingClass has to be a subtype of the ExchangedClass.

The example above sketches the case in which we need to allow the con-
struction of the original class instance under some circumstances. A more com-
plicated case would involve several exchanging classes each of which would be
appropriate under different conditions. This conditional logic could be imple-
mented in the around advice or—if location based—by appropriate pointcuts.

5.2 Method Substitution
Similarly to the class exchange, we may need to change or completely disable the
execution of some methods. This can also be easily acheived with an around
advice. The affected methods have to be specified by an appropriate point-
cut. We capture method calls, not executions, which gives us the flexibility in
constraining the method substitution logic by the context of the method call.

The following pointcut captures all method calls of the method called method()
belonging to the TargetClass class:

pointcut allMethodCallsPointcut(TargetClass t, int a):
call(ReturnType TargetClass.method(..)) && target(t) && args(a);

The expression call(ReturnType TargetClass.method(..)) captures all the
TargetClass.method(..) calls. The target() pointcut is used to capture the refer-
ence to the target class. The method arguments can be captured by the args()
pointcut. In the example code above, we assume mehod() has one argument,
which is of the integer type, and capture it with the args() pointcut.

CHAPTER 5. ASPECT-ORIENTED CHANGE REALIZATION 18

The following example captures the method() calls made within the control
flow of any of the CallingClass methods:

pointcut specificMethodCallsPointcut(TargetClass t, int a):
call(ReturnType TargetClass.method(a)) && target(t) && args(a)
&& cflow(call(∗ CallingClass.∗(..)));

This embraces the calls made directly in these methods, but also any of the
method() calls made further in the methods called directly or indirectly by the
CallingClass methods.

By making an around advice on the specified method call capturing pointcut,
we can create a new logic of the method to be substituted:

public aspect MethodSubstition {
pointcut methodCallsPointcut(TargetClass t, int a): . . .;

ReturnType around(TargetClass t, int a): methodCallsPointcut(t, a) {
if (. . .) {

. . .; // the new method logic
} else {

proceed(t, a);
}

}
}

Note that sometimes we may need to let the original method call proceed.
This is done by simply letting the captured join point proceed. In the code
snippet above, we supply the join point proceed with the original join point
context. The context includes the captured method arguments, which may
have to be adapted—and sometimes this may actually be the whole method
adaptation we need—and this can be done directly in the proceed() call as in
this example where the integer argument is halved:

proceed(t, a / 2);

5.3 Enumeration Modification
Assume we need to modify some enumeration type. Enumeration types are
represented as classes with a static field per each enumartion value. A single
enumeration value type is represented as a class with a field that holds the actual
(usually integer) value and its name.

To add a new enumeration value, we need to introduce a static field that
represents this value and initialize it:

public aspect NewEnumType {
public static EnumValueType EnumType.NEWVALUE =

new EnumValueType(10, "new value name");
}

A common practice is to include a method in the enumeration type class by
which one may retrieve all possible enumeration values for that type. Obviously,

CHAPTER 5. ASPECT-ORIENTED CHANGE REALIZATION 19

we would have to modify this method return value, too. We consider the return
value modification as a change type of its own and as such treat it separately
in Section 5.5.

5.4 Additional Parameter Checking
Often, a change involves additional check or a constraint on method arguments.
For this, we have to specify a pointcut that will capture all the calls of the
affected methods along with their context similarly as in Section 5.2. Their
arguments will be checked by the check() method called from within an around
advice which will throw WrongParamsException if they are not correct:

public aspect AdditionalParameterChecking {
pointcut methodCallsPointcut(TargetClass t, int a): . . .;

ReturnType around(/∗ arguments ∗/) throws WrongParamsException:
methodCallsPointcut(/∗ arguments ∗/) {

check(/∗ arguments ∗/);
return proceed();

}

void check(/∗ arguments ∗/) throws WrongParamsException {
if (arg1 != ’desired value’) {

throw new WrongParamsException();
}

}
}

5.5 Additional Return Value Checking/Modifica-
tion

When we need to implement some additional processing of the method return
value, we can do it again using a similar pointcut as we did in the method
substitution described in Section 5.2). The method return value is processed by
an around advice:

public aspect AdditionalReturnValueProcessing {
pointcut methodCallsPointcut(TargetClass t, int a): . . .;

private ReturnType retValue;

ReturnType around(): methodCallsPointcut(/∗ captured arguments ∗/) {
retValue = proceed();
processOutput(/∗ captured arguments ∗/);
return retValue;

}

CHAPTER 5. ASPECT-ORIENTED CHANGE REALIZATION 20

private void processOutput(/∗ arguments ∗/) {
// processing logic

}
}

In the around advice, we assign the original return value (retValue = proceed())
to the private member of the aspect. Then this value is processed using the
processOutput() method and returned by the around advice.

5.6 Performing Action After Event
We often need to perform some action after event, such as sending a notification,
unlocking product download to the user after a sale, displaying a user interface
control, performing some bussiness logic, etc. Since events are actually repre-
sented by method calls, we may again rely on the method call capturing pointcut
we first introduced in Section 5.2). The desired action can be implemented in
an after advice:
public aspect PerformingActionAfterEvent {

pointcut methodCallsPointcut(TargetClass t, int a): . . .;

after(/∗ captured arguments ∗/): methodCallsPointcut(/∗ captured arguments ∗/) {
performAction(/∗ captured arguments ∗/);

}

private void performAction(/∗ arguments ∗/) {
// action logic

}
}

The after advice executes after the captured method calls. It calls the
performAction() method to perform the desired action.

5.7 Logging
We often need to log some events in the system, such as user registration, sale
registration, errors, etc. Logging is similiar to Performing Action After Event
change, where the action performed after event is to log the event. When im-
plementing logging, a method call pointcut usually captures a group of methods
that perform similar tasks and their call can be logged same way.
public aspect Logging {

pointcut methodCallsPointcut(int a): . . .;

after(/∗ captured arguments ∗/): methodCallsPointcut(/∗ captured arguments ∗/) {
// log method call

}
}

Chapter 6

Applying Changes to Web
Applications

Our change scenario concerning adapting affiliate tracking software contains
many typical web application changes.1 We will go through each change and ex-
plain how it could be realized using the general aspect-oriented change schemes
introduced in the previous chapter. This list of changes is not a complete list
and many other changes may be appended to this list later.

6.1 Integration Changes
Web applications often have to be integrated with other systems (usually other
web applications). Two main types of integration may be identified: one way
and two way integration.

Integration with a newsletter from our scenario is a typical example of one
way integration. Assume that when an affiliate signs up to the affiliate tracking
software, we want to sign him up to a newsletter, too. When the affiliate
account is deleted from the affiliate tracking software, it should be deleted from
the newsletter, too.

The essence of this type of integration is one way notification: only the
integrating application notifies the integrated application of relevant events. In
our case, such events are the affiliate signup and affiliate account deletion.

To implement this change, we first have to identify a place in the affili-
ate tracking software at which the integration should happen. The place for the
signup to the newsletter is upon returning from the AffiliateSignup.processSignup()
method. After returning from this method, a user is signed up to the affiliate
tracking software. The place for removing from the newsletter is after returning
from the Affiliate.delete() method.

1This chapter is adapted from parts of my paper Evolution of Web Applications with
Aspect-Oriented Design Patterns [1] to which my contribution is approximately 60 %

21

CHAPTER 6. APPLYING CHANGES TO WEB APPLICATIONS 22

The integrated application has to be notified of these events. A user can be
signed up or signed out from the newsletter by posting his e-mail and name to
the one of the newsletter scripts. Such an integration corresponds to the Perform
Action After Event change (see Section 5.6). In the after advice we will make a
post to the newsletter sign up or sign out script and pass it the e-mail address
and name of the newly signed up or deleted affiliate. We can seamlessly combine
multiple integration changes to integrate a system with several other systems.

Introducing a two way integration can be seen as two one way integration
changes: one applied to each system. A typical example of such a change is data
synchronization (e.g., synchronization of user accounts) across multiple systems.
When the user changes his profile in one of the systems, these changes should
be visible in all of them.

Our scenario doesn’t require this kind of change, but it is also very common
and worth mentioning. For example we may want to have a forum, where our
affiliates can discuss. To make this comfortable to affiliates, user accounts of
forum and affiliate tracking system should be synchronized. Implementation
of this kind of change requires the ability to modify both systems. If this
requirement is fulfilled, then we can implement this change as two one way
integration changes.

6.2 Grid Display Changes
It is often required to modify the way data are displayed or inserted. In web
applications, data are very often displayed in grids, and data input is usually
realized via forms. Such changes are also required by our scenario.

Grids usually directly display the content of a database table or collation of
data from multiple tables. Typical changes required on grid are adding columns,
removing them, and modifying their presentation. A grid that is going to be
modified must be implemented either as some kind type of reusable component
or generated by row and cell processing methods. If the grid is hard coded for
a specific view, it is much more difficult or even impossible to modify it using
aspect-oriented techniques.

If the grid is implemented as a data driven component, we just have to
modify the data passed to the grid. This corresponds to the Additional Return
Value Checking/Modification change (see Section 5.5). If not, it has to be
provided at least with the methods for processing rows and cells as in our affiliate
tracking software scenario. These processing method calls (e.g., displayRow()
and displayCell()) will be the join points for our change.

Altering column presentation in a grid is usually neccessary due to different
data presentation formats at different places. For example, in Japan and Hun-
gary, in contrast to most other countries, the surname is placed before the given
names. This change requires preprocessing of all the data to be displayed in a
grid before actually displaying them. A simpler solution is to modify the way the
grid cells are rendered by the displayCell() method, which may be implemented
again as a Method Substitution change (see Section 5.2):

CHAPTER 6. APPLYING CHANGES TO WEB APPLICATIONS 23

public aspect ChangeUserNameDisplay {
pointcut displayCellCalls(String name, String value):

call(void UserTable.displayCell(..)) || args(name, value);

around(String name, String value): displayCellCalls(name, value) {
if (name == ‘column name to be modified‘) {

. . . // display the modified column
} else {

proceed();
}

}
}

Sometimes, we have to add or remove a column from a grid. According to
our scenario, a genre field has to be added to the affiliate table. A database has
to be accommodated to this change, but we also have to display the additional
genere column in the affiliate table. This may be performed after an event
of dispalying the existing columns of the affiliate table which brings us to the
Performing Action After Event change (see Section 5.6).

Not all data displayed in a grid are always necessary. Sometimes, we would
like to remove certain columns to make the grid more compendious. This re-
quires a conditional execution of the displayCell() method that may be realized
as a Method Substitution change (see Section 5.2). The solution is similar to
altering column in grid.

6.3 Input Form Changes
Similarly to tables, forms are often subject to modifications. Users often want
to add or remove fields from forms or perform additional checks on form inputs.
In our scenario, we have to add genre column to the signup and affiliate profile
form. If we want to modify forms using aspect-oriented programming, they may
not be hard coded in HTML. They have to be generated from a list of fields
or at least generated by a method. In such a way we can apply changes as an
Enumeration Modification change (see Section 5.3).

To add new fields, we need to create an after advice which will be executed
after the usual form processing and will store the newly added field. Forms do
not have to contain all of the fields if there are default values for these fields.

The after advice can be used similarly to remove fields from a form. A default
value can be implemented as an Additional Return Value Checking/Modification
change (see Section 5.5) of the method used to retrieve list of fields in the form.

If we want to introduce additional validations on the form input data to the
system without built-in validation, an Additional Parameter Checking change
(see Section 5.4) can be applied to methods that process values submitted by
the form. If we want to add new validator to systems, that already have built-in
validation, the new validator usually has to be added to the list of validators.
This can be done by implementing Performing Action After Event change (see

CHAPTER 6. APPLYING CHANGES TO WEB APPLICATIONS 24

Section 5.6), which adds new validator to the list of validators after this list is
initalized.

6.4 Introducing User Rights Management
Many web applications don’t implement user rights management features and
it has to be introduced as a change. If the web application is structured appro-
priately, it should be possible to specify user rights upon the individual objects
and their methods, which is a precondition for applying aspect-oriented pro-
gramming.

User rights management can be introduced using a modification of the Bor-
der Control design pattern [12]. This pattern will be employed to specify regions
in our application. According to our scenario, we have to create a restricted
administrator account that will prevent the administrator from modifying cam-
paigns and banners and decline/delete affiliates. All the methods for campaigns
and banners are located in the application.campaigns and application.banners
packages. The method for deleting an affiliate is Affiliate.delete() and the
method for declining affiliate is Affiliate.decline(). The region specification will
be as follows:

public aspect RestrictedAdminAccount {
pointcut prohibitedRegion():

(within(application.Proxy) && call(void ∗.∗(..)))
|| (within(application.campaigns.+) && call(void ∗.∗(..)))
|| within(application.banners.+)
|| call(void Affiliate.decline(..))
|| call(void Affiliate.delete(..));

}

Then we have to create an around advice which will check whether the user
has rights to access the specified region. This can be implemented using method
substitution (see Section 5.2) applied to the pointcut specified above.

6.5 User Interface Restriction
Most users don’t make use of all the functions implemented in applications and
would like to restrict the user interface. It is particularly annoying when a user
sees options inaccessible to him due to user rights restrictions posed upon his
account.s

We have a similar problem in our application with the campaigns and ban-
ners option. This option has to be removed from the menu for the restricted
administrator account we have just created (see Section 6.4). Menu items are
retrieved by the Menu.getMenuItems() method. We only have to modify the
return value of this method which may be achieved by applying an Additional
Return Value Checking/Modification change (see Section 5.5) to remove the
banners and campaigns items.

CHAPTER 6. APPLYING CHANGES TO WEB APPLICATIONS 25

6.6 Introducing a Resource Backup
As specified in our scenario, we would like to have a backup SMTP server for
sending notifications. Each time the affiliate tracking software needs to send
a notification, it creates an instance of the SMTPServer class which handles
the connection to the SMTP server and sends an e-mail. The constructor of the
SMTPServer class has parameters for the server URL, user name, and password.
On creation, it tries to connect to the specified server.

The change to be implemented will ensure employing the backup server
if the connection to the primary server fails. Such a resource backup can be
implemented as a Class Exchange change (see Section 5.1), where the exchange
logic will be as follows:

SMTPServer around(): exhangedClassConstructor() {
return getExchangeObject(proceed());

}

SMTPServer getExchangeObject(SMTPServer server) {
if (server.isConnected()) {

return server;
} else {

return new SMTPServer(/∗ alternative SMTP server params ∗/);
}

}

The around advice creates the original instance of SMTPServer class using
proceed() method and passes it to the getExchangeObject() method which
implements the exchange logic. If the original server is connected, this method
returns an object of the original server type. Otherwise, it returns an object of
the alternative server type.

Chapter 7

Aspect-Oriented Change
Realization Framework

In Section 7.1 a change realization framework is proposed. Section 7.2 discusses
how to implement change of already esxisting change.

7.1 Model of Change Realization Framework
The previous two chapters have demonstrated how aspect-oriented programming
can be used in the evolution of web applications.1 Change realizations we have
proposed actually cover a broad range of changes independent of the application
domain. Each change realization is accompanied by its own specification. On
the other hand, the initial description of the changes to be applied in our scenario
is application specific. With respect to its specification, each application specific
change can be seen as a specialization of some generally applicable change. This
is depicted in Figure 7.1 in which a general change with two specializations is
presented. However, the realization of such a change is application specific.
Thus, we determine the generally applicable change whose specialization our
application specific change is and adapt its realization scheme.

Figure 7.1: General and specific changes with realization.

When planning changes, it is more convenient to think in a domain specific
1This section is adapted from parts of my paper Evolution of Web Applications with

Aspect-Oriented Design Patterns [1] to which my contribution is approximately 60 %

26

CHAPTER 7. ASPECT-ORIENTED CHANGE REALIZATION FRAMEWORK27

manner than to cope with programming language specific issues directly. In
other words, it is much easier to select a change specified in an application
specific manner than to decide for one of the generally applicable changes. For
example, in our scenario, an introduction of an SMTP server backup was needed.
This is easily identified as a resource backup, which subsequently brings us to
the realization in the form of class exchange.

To support the process of change selection, the catalogue of changes is needed
in which the generalization-specialization relationships between change types
would be explicitly established. The following list sums up these relationships
between change types we have identified in the domain of web applications (in
Chapter 6 and 5):

• One Way Integration (Section 6.1): Perform an Action After Event (Sec-
tion 5.6)

• Two Way Integration (Section 6.1): Perform an Action After Event (Sec-
tion 5.6)

• Adding a Column to a Grid (Section 6.2): Perform an Action After Event
(Section 5.6)

• Removing a Column from a Grid (Section 6.2): Method Substitution (Sec-
tion 5.2)

• Altering Column Presentation in a Grid (Section 6.2): Method Substitu-
tion (Section 5.2)

• Adding Fields to a Form (Section 6.3): Enumeration Modification (Sec-
tion 5.3)

• Removing Fields from a Form (Section 6.3): Enumeration Modification
(Section 5.3) with Additional Return Value Checking/Modification (Sec-
tion 5.5)

• Introducing an Additional Constraint on Fields (Section 6.3): Additional
Parameter Checking (Section 5.4)

• Introducing User Rights Management (Section 6.4): Border Control with
Method Substitution (Section 5.2)

• User Interface Restriction (Section 6.5): Additional Return Value Check-
ing/Modifications (Section 5.5)

• Introducing a Resource Backup (Section 6.6): Class Exchange (Section 5.1)

CHAPTER 7. ASPECT-ORIENTED CHANGE REALIZATION FRAMEWORK28

7.2 Implementing Changes of Changes
When implementing changes in object-oriented manner, changes become a part
of the application. However, when changes are implemented using aspect-
oriented techniques, they are easily distinguishable from the rest of application.
When a change of change is required, it can be implemented in two ways:

• the change of change is implemented as new change (multi-layer model)

• the change which is supposed to be modified is modified using conventional
techniques (two-layer model)

7.2.1 Multi-Layer Model
In the multi-layer model, each change is implemented as an independent as-
pect. This is depicted in Figure 7.2 in which Change 1.1.1 modifies Change 1.1
and Change 1.1 modifies Change 1. Change 1 was the first change that was
implemented and modifies the application Class 1 and Class 2.

Class 1

Class 2

Class N

Change 1

Change M

Change 1.1 Change 1.1.1

Core Application Layer Change Layer 1 Change Layer 2 Change Layer 3

Figure 7.2: Multi-layer change model.

This approach provides better control over changes as changes are better
separated, but it increases the complexity of application.

CHAPTER 7. ASPECT-ORIENTED CHANGE REALIZATION FRAMEWORK29

7.2.2 Two-Layer Model
In the two-layer model, the change of Change 1 is not implemented as an inde-
pendent aspect, but it is implemented by changing source code of the Change 1.
This is depicted in Figure 7.3 in which only two layers are shown. Core Appli-
cation Layer represents classes of the application and Change Layer represents
aspects, which implement changes.

Class 1

Class 2

Class N

Change 1

Change M

Core Application Layer Change Layer

Figure 7.3: Two-layer change model.

This approach doesn’t provide so precise control over changes as multi-layer
model, but the complexity of application does not increase by implementing
changes of changes.

Chapter 8

The Approach Evaluation

In this chapter, the approach to change control using aspect-otriented program-
ming is evaluated by implementing and evaluating changes in the YonBan sys-
tem, which is described in the Section 8.1. Implemted changes are described
and evaluated in Section 8.2.

8.1 YonBan
YonBan is a system used for student management at Faculty of Informatics and
Information Technologies on Slovak University of Technology in Bratislava. It
is used for project (bachelor and master thesis . . .) registration and project
lifecycle management. It includes a module that enables uploading project
results and documentation and also a module that enables project ranking.

YonBan was developed by students of Faculty of Informatics and Information
Technologies as a Team Project in year 2006 [11]. This system is reimplementa-
tion of a system that is already in use at Faculty of Informatics and Information
Technologies. YonBan is based on the J2EE and the Spring, Hibernate, and
Acegi frameworks. The YonBan architecture is based on the Inversion Of Con-
trol and Model-View-Controller patterns. All details of YonBan will not be
explained here. Instead, the parts of the system affected by the changes will be
explained as needed.

8.2 Implemented Changes
The following changes have been implemented in YonBan using the proposed
approach:

• telephone number validator

• telephone number formatter

• project registration statistics

30

CHAPTER 8. THE APPROACH EVALUATION 31

• project registration constraint

• exception logging

• name formatter

These changes are described an evaluated in following Sections.

8.2.1 Telephone Number Validator
Suppose YonBan has to be extended with a telephone number validator in the
user profile. This validator is supposed to check whether the entered number is
a valid telephone number. This change corresponds to input form modification
introduced in Section 6.3 as it modifies the way form submission is processed at
the server.

YonBan is based on Model-View-Controller architecture. In this architec-
ture, the controller processes responds to events (HTTP requests in web appli-
cations) and invokes changes in the model. On top of that, each controller in
YonBan has a list of validators which are used to validate the submitted form
fields. For the telephone number validator to be active, it has to be added to
this list of validators.

The new validator (see Appendix A.1.2) and the aspect which adds this
validator to the list of controller validators (see Appendix A.1.1) has to be
implemented. This aspect is an implementation of the performing action after
event change introduced in Section 5.6. Event in this case is the initialization
of the controller bean. This initialization is captured by the following pointcut:

private pointcut controllerInitialization(SimpleDetailController controller) :
execution(void sk.yonban.core.web.SimpleDetailController.afterPropertiesSet())
&& target(controller);

After the controllerInitialization() pointcut is captured, an after advice is
executed. However, there is no specific controller for user profile as it uses the
general class SimpleDetailController. Because of this, after advice has to check
if initialized bean name equals “pouzivatelInfoController”, which is the name of
the user profile controller bean:

after(SimpleDetailController controller) : controllerInitialization(controller) {
if (!controller.getBeanName().equals("pouzivatelInfoController")) {

return;
}
addValidator(controller);

}

Compared to the non aspect-oriented way of adding a validator to YonBan,
the aspect-oriented approach provides better modularization by implementing
change in two files and not modifying any existing file in the YonBan. Imple-
menting telephone number validator using the non aspect-oriented approach in-
cludes creation of a new validator class, but on top of that it requires a change in
two configuration files (validator.xml and controller.xml). The aspect-oriented

CHAPTER 8. THE APPROACH EVALUATION 32

approach also enables further validators to be easily added to the controller class
via aspects.

8.2.2 Telephone Number Formatter
In previous Scetion, the telephone number validator was implemented. This val-
idator checks if the entered telephone number is a valid international telephone
number. Most of the YonBan users do not enter their telephone number with an
international calling code prefix and because of that, validator validates these
numbers as incorrect (which is intended behavior). As most of YonBan users
are from Slovakia, we could automatically add Slovak international calling code
prefix to the number (if it is not already present) and thus making the system
more user friendly.

User telephone number is being entered in a user profile form. Each form in
YonBan has a corresponding command object which is filled by values submitted
from this form. This command object has also methods, which allow it to load
and save form data to database. To add a prefix to the telephone number,
return value of getTelefon() method must be modified. This corresponds to the
additional return value modification change (Section 5.5). The execution of the
getTelefon() method is captured by the following pointcut:

private pointcut getTelefonPointcut():
execution(String sk.yonban.model.command.PouzivatelInfoCommand.getTelefon());

After the getTelefonPointcut() is captured, an around advice which adds
international calling code prefix to the telephone number is executed:

String around(): getTelefonPointcut() {
number = proceed();
processTelephoneNumber();
return number;

}

Full implementation of the telephone number formatter can be found in
Appendix A.2.

Compared to the non aspect-oriented way of adding the telephone number
formatter to YonBan, aspect-oriented approach provides better modularization
by implementing change in a separate file and not modifying the original YonBan
source code.

The telephone number formatter change interacts with telephone number
validator change (Section 8.2.1) as the telephone number validator validates
the PouzivatelInfoCommand which is modified by telephone number format-
ter. This interaction causes no problems because the validator uses getTelefon()
method to access telephone number submitted by the user profile form. Vali-
dation and formatting works like this: User enters telephone number without
international calling code prefix and submits the user profile form. Upon the
form submission the phone number validator is executed. It gets the telephone
number value by calling the getTelefon() method. At this point, the telephone
number validator around advice is executed. It calls the getTelefon() method

CHAPTER 8. THE APPROACH EVALUATION 33

and checks if the return value (telephone number submitted by form) contains
the international calling code prefix. If not, this code is appended to the tele-
phone number and the new value is returned. The validator receives telephone
number with international calling code prefix and validates it as correct. The
telephone number is stored in the database (including the international calling
code prefix as the method that stores number in the database uses getTelefon()
method, too) and the form with the telephone modified number is shown back
to the user.

8.2.3 Project Registration Statistics
Registering students to projects is one of the main functions of YonBan. Suppose
we want to have statistics of how many students have been registered in a project
during some period. This includes storing the number of students registered in
a project upon each new registration or unregistration.

The project registration statistics module can be considered as a new system
that has to be integrated with the YonBan. This corresponds to the one way
integration change (Section 6.1). The project registration statistics module
needs to be notified upon each new registration or unregistration. As described
in Section 6.1, the integration change corresponds to the performing action after
event change (Section 5.6).

The key point in introducing project registration statistics is to define a
pointcut that would capture all changes in project registrations and to create
an after advice that will be executed after these pointcuts are captured. This
advice has to notify the project registration statistics module of the current
number of users registered in a project.

There are two methods used for project registration in YonBan:

// register student "pouzivatel" in project "projekt"
public List<Error> registrujProjekt(Projekt projekt, Pouzivatel pouzivatel);

// unregister student "pouzivatel" from project "projekt"
public List<Error> odregistrujProjekt(Projekt projekt, Pouzivatel pouzivatel);

The pointcut that captures these two methods and the after advice which
notifies Project Registration Statistics module can be found in an Appendix A.3.

The advantage of using the aspect-oriented approach compared to the non
aspect-oriented approach is not so significant in this case. YonBan is well de-
signed and all registrations are performed through two methods, so the non
aspect-oriented implementation would require adding only one line of code to
each one of these two methods. The advantage of the aspect-oriented approach
would be much more significant if projects could be registered via multiple meth-
ods, which would require changes in every method. However, the advantage of
better change modularization remains. The change is located only in one file
and not spread throughout the project.

CHAPTER 8. THE APPROACH EVALUATION 34

8.2.4 Project Registration Constraint
When a new student is imported to YonBan, he has no contact information
filled in. If such a student registers to a project and has no contact informa-
tion filled in, then the project supervisor will not able to contact him. Sup-
pose we want to ensure that each student that registers to a project must
have the email address filled in. Projects are registered through ProjektServi-
ceImpl.registrujProjekt(Projekt projekt, Pouzivatel pouzivatel) method, which
has already been identified in Section 8.2.3. To implement the desired change,
we have to introduce a constraint on the method parameter pouzivatel. This
corresponds to the additional parameter checking change (Section 5.4). The
Pouzivatel.getEmail() method should not return an empty string (the email ad-
dress is not filled). If the email address is empty, registrujProjekt() method
should not be executed and the error should be returned. Execution of this
method is captured by the the following pointcut:

private pointcut registerUser(Projekt projekt, Pouzivatel pouzivatel) :
execution(List<Error> sk.yonban.service.ProjektServiceImpl.registrujProjekt(..))
&& args(projekt, pouzivatel);

After the registerUser() pointcut is captured, the around avice which checks
user email address is executed:

List<Error> around(Projekt projekt, Pouzivatel pouzivatel) :
registerUser(projekt, pouzivatel) {
if (pouzivatel.getEmail().length() == 0) {

return /∗ error message ∗/;
}
return proceed(projekt, pouzivatel); // execute registrujProjekt() method

};

The full implementation of the Project Registration Constraint can be found in
Appendix A.4.

The project registration constraint change interacts with the project reg-
istration statistics change (Section 8.2.3) as the project registration statistics
after advice (Section A.3) advises the same method as the project registration
constraint around advice (Section A.4). This interaction of changes causes no
problems because if the around advice of project registration constraint change
does not execute registrujProjekt() method, the after advice of project registra-
tion statistics is not executed, too, which is correct behaviour.

The advantages of the aspect-oriented approach compared to the non-aspect
oriented approach are the same as with the project registration statistics change
(Section 8.2.3).

8.2.5 Exception Logging
Suppose we want to have an exception logging in YonBan as exception logging
can be very usefull when debugging the system. This change corresponds to the
logging change (Section 5.7). Exception logging can be easily achieved by two

CHAPTER 8. THE APPROACH EVALUATION 35

after advices (Appendix A.5). One advice captures and logs runtime exceptions,
while the other one captures all other exceptions.

after() throwing(RuntimeException e): execution (∗ ∗.∗(..)) {
// log Exception

}

after() throwing(Exception e): execution(∗ ∗.∗(..) throws ∗) {
// log Exception

}

Compared to the non aspect-oriented approach, the aspect-oriented ap-
proach is much easier to implement. Implementing exception logging without
aspect-oriented programming would require either to add logging to every ex-
ception constructor or to every catch block in the application. This would be
very time consuming and also hard to remove in the case it is needed no more.

8.2.6 Name Formatter
Names are formatted different way in different countries. For example, in Japan
and Hungary, in contrast to most other countries, the surname is placed before
the given names. In YonBan, names are formatted as it is common in Slovakia
(the given name is placed before the surname). Suppose we want to install
YonBan in a country that uses different name formatting (e.g., Hungary). We
need to find all places in the system where the names are being formatted. In
YonBan this is done by the Pouzivatel.getCeleMeno() method. Non aspect-
oriented approach would require a change of this method. Another possible
solution is to have a system setting which would tell how the names should be
formatted. By employing aspect-oriented approach this change can be regarded
as a method substitution change (Section 5.2). The Pouzivatel.getCeleMeno()
method has to be replaced by another method which formats the name in a
desired way:

String around(Pouzivatel pouzivatel):
execution(String sk.yonban.model.Pouzivatel.getCeleMeno()) && target(pouzivatel) {

return getCeleMeno(pouzivatel);
}

The full implementation can be found in Appendix A.6.

8.3 Conclusion
In this chapter, the proposed approach to the aspect-oriented change implemen-
tation was evaluated. Six changes has been choosen and implemented. When
the change was about to be implemented, a coresponding change was found out
in the catalogue of web application specific changes. If this web application spe-
cific change was identified, the change was implemented the way it is described
in this web application specific change.

CHAPTER 8. THE APPROACH EVALUATION 36

However, some changes that were implemented had no corresponding web
application specific changes. There are two reasons for this. First, the cata-
logue of web application specific changes is not complete and can be extended
as new change types are identified. Second, the YonBan is based on a different
architecture than the Affiliate tracking system which was used to identify web
application specific changes. But even if the web application specific change
could not be identified, there have always been a corresponding generally appli-
cable change which described how to implement the change.

The result of this evaluation is that generally applicable changes can be
used in different types of systems while web application specific changes are
tightly coupled with the application architecture. Some web application spe-
cific changes identified in one type of systems may not applicable to the web
applications based on different architecture. There could be several catalogues
of web application specific changes each of which would be applicable to one
type of web applications (e.g., Catalogue of web applications specifc changes for
applications based on SpringMVC. This is the case of the YonBan system).

While implementing changes in YonBan, interaction of changes has been
identified, too. No problems have been encountered even if changes affected
same parts of system.

Chapter 9

The Seasar Framework for
Aspect-Oriented
Programming in PHP

To show that proposed approach to change implementation can be used also in
less expressive aspect-oriented languages or frameworks, the Seasar framework
is introduced. Reasons why the Seasar was selected among of other aspect-
oriented extensions and Seasar’s overview can be found in Section 9.1. Section
9.2 describes how control flow pointcuts required by some changes can be im-
plemented in Seasar framework.

9.1 The Seasar Framework Overview
There are many PHP aspect-oriented frameworks and extensions such as PH-
PAspect, 1 Aspect-Oriented PHP, 2 and AOP Library for PHP 3. Seasar frame-
work 4 was selected because:

• it supports dynamic weaving (no need to install any PHP extensions)

• it supports dependency injection

• it is a multiplatform solution (avalaible also for Java and .NET)

• it is free and open source solution

• it was used in many projects
1http://phpaspect.org/
2http://www.aophp.net/
3http://www.phpclasses.org/browse/package/2633.html
4http://www.seasar.org/en/php5/index.html

37

http://phpaspect.org/
http://www.aophp.net/
http://www.phpclasses.org/browse/package/2633.html
http://www.seasar.org/en/php5/index.html

CHAPTER 9. THE SEASAR FRAMEWORK FOR ASPECT-ORIENTED PROGRAMMING IN PHP38

9.1.1 Seasar Aspect-Oriented Programming Compared to
the AspectJ Approach

The Seasar framework is based on the same aspect model as AspectJ, but it
does not support all the features that AspectJ supports. The differences are
explained in the following paragraphs.

Join points. In the Seasar framework, only method calls can be used as join
points. Compared to AspectJ, it doesn’t support field access and other join
points.

Pointcuts The pointcut pattern in Seasar can consist only of regular expres-
sions matching methods. Conjunction of these patterns is also allowed. Com-
pared to the AspectJ, it doesn’t support disjunction of patterns, cflow, nor
cflowbellow pointcuts.

Advices In the Seasar, advice type is not explicitly defined. Each advice is
of the around type. If advice doesn’t do anything after the method execution,
it can be considered to be a before advice. If advice doesn’t do anything before
method execution, it can be considered to be an after advice.

Compared to the AspectJ, Seasar doesn’t support inter-type declarations
nor compile-time declaration. Compile-time declaration can’t be implemented
since PHP is an interpreted language.

9.1.2 Seasar Basics
In the Seasar framework, aspects are defined in the S2Container configuration
file (dicon file) [6]. There is no restriction on placement of the configuration file,
but it is usually placed in the root folder of application.

Configuration file. Configuration file can contain an aspect tag. It weaves
an aspect into a component. Interceptor is specified in a PHP statement in a
BODY or in a component tag in a child tag. If several aspects are weaved into
a component, they are processed in the order they have been declared.

Pointcut attribute. Several method names may be specified by delimiting
the names with a comma. Not specifying any pointcut implies that all meth-
ods in an interface implemented by a component are affected. Also, regular
expressions may be used to specify method names.

Example. To show how the Seasar Framework works a couple examples will
be presented. These examples show basic features of Seasar framework.

The following is an example of an aspect which should advice getTime()
method in Date class:

CHAPTER 9. THE SEASAR FRAMEWORK FOR ASPECT-ORIENTED PROGRAMMING IN PHP39

<?php
class Date {

function Date() {}

function getTime(){
print ’getTime \n’;
return ’12:00:30’;

}

function getDate(){
print ’getDate \n’;
return ’25’;

}
}
?>

The following is an example that employs a regular expression to apply an
aspect to all public methods in the Date class:

<component class="Date">
<aspect pointcut=".∗">

<component class="MyInterceptor"/>
</aspect>

</component>

The folowing is an example of the MyInterceptor aspect implementation:

<?php
class MyInterceptor implements MethodInterceptor {

public function invoke(MethodInvocation $invocation){
print "Before \n"; <−− Before invocation
$ret = $invocation−>proceed();
print "After \n"; <−− After invocation
return $ret;

}
}
?>

The MethodInvocation object contains following properties:

$method; <−− name of invocated method
$methodArgs; <−− arguments of invocated method
$target; <−− target object of method invocation

When the following code is executed:

$date = $container−>getComponent(’Date’);
print $date−>getTime();
print "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− \n";
print $date−>getDate();

The result is:

Before
getTime

CHAPTER 9. THE SEASAR FRAMEWORK FOR ASPECT-ORIENTED PROGRAMMING IN PHP40

After
12:00:30
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Before
getDate
After
25

As it can be seen, the advice was applied to all methods of Date class. This is
because the pointcut was specified by a regular expression .*.

If the configuration file is modified to following:

<component class="Date">
<aspect pointcut="getDate">

<component class="MyInterceptor"/>
</aspect>

</component>

The result is:

getTime
12:00:30
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Before
getDate
After
25

In this case, the advice was applied to getDate() method only.

9.2 Implementing More Complex Aspect-Oriented
Constructs in Seasar

The Seasar framework does not support cflow(), and cflowbellow() pointcuts.
However, when implementing changes, these pointcuts might be necessary. Here,
a way to implement “cflow pointcut” in the Seasar framework will be proposed It
will be shown in the following example. Suppose we want to capture all calls of
Affiliate.insert() method that were called from AffiliateSignup.processSignup()
method. To accomplish this, one additional advice has to be created. This
advice will be an around advice of AffiliateSignup.processSignup() method and
will look as follows:

class AffiliateSignupControlFlowInterceptor implements MethodInterceptor {
public static $invocationCount = 0;

public static function isInControlFlow() {
return (self::$invocationCount > 0);

}

public function invoke(MethodInvocation $invocation){

CHAPTER 9. THE SEASAR FRAMEWORK FOR ASPECT-ORIENTED PROGRAMMING IN PHP41

self::$invocationCount++;
$ret = $invocation−>proceed();
self::$invocationCount−−;
return $ret;

}
}

This around advice increments the $invocationCount on each call of the AffiliateSignup.processSignup()
method and decrements it on return from this method. If the $invocationCount
counter is greater than zero, execution is in the control flow the AffiliateSignup.processSignup()
method.

In the advice for Affiliate.insert() method it is necessary to check whether
it was called in the control flow of AffiliateSignup.processSignup() method. If
not, proceed() is called and the advice code is not used. This advice will look
as follows:

class AffiliateInsertInterceptor implements MethodInterceptor {

public function invoke(MethodInvocation $invocation){
if (!AffiliateSignupControlFlowInterceptor::isInControlFlow()) {

return $invocation−>proceed();
}
// ...
// advice code
// ...

}
}

This chapter showed that even more complex aspect-oriented constructs such
as control flow pointcuts that are needed by changes identified in Chapter 5 can
be implemented in less expressive aspect-oriented languages or frameworks and
thus the proposed approach is not limited to AspectJ.

Chapter 10

Conclusions and Further
Work

In this thesis, the possibility of expressing changes in web applications by means
of aspect-oriented programming was analyzed. On the basis of this analysis,
an approach to web application evolution was introduced. In this approach,
changes are represented as aspects and applied as instantiations of generic
aspect-oriented change types. Several change types which can occur in web
applications as evolution or customization steps, and correspondence between
these change types and generic aspect-oriented change types were identified.
This approach shows that such changes can be managed as aspects. The im-
plementation and evaluation of changes shows that the proposed approach is
applicable for change implementation in web applications and that generally
applicable changes can be used in different types of systems while web appli-
cation specific changes are tightly coupled with the application architecture.
Some web application specific changes identified in one type of systems may not
applicable to the web applications based on different architecture. There could
be several catalogues of web application specific changes each of which would
be applicable to one type of web applications.

To show that proposed approach to change implementation is not limited
to AspectJ and can be used also in less expressive aspect-oriented languages
or frameworks, the Seasar framework was introduced and techniques for imple-
menting advanced aspect-oriented constructs in this framework were developed.

Further work should focus mainly on evaluating more interactions between
changes, extending current catalogue and creating more catalogues of web ap-
plication specific changes focused on a specific types of web applications.

42

Bibliography

[1] Michal Bebjak, Valentino Vranić, and Peter Dolog. Evolution of web ap-
plications with aspect-oriented design patterns. In Marco Brambilla and
Emilia Mendes, editors, Proc. of ICWE 2007 Workshops, 2nd Interna-
tional Workshop on Adaptation and Evolution in Web Systems Engineering,
AEWSE 2007, in conjunction with 7th International Conference on Web
Engineering, ICWE 2007, pages 80–86, Como, Italy, July 2007.

[2] Walter Cazzola, Sonia Pini, and Massimo Ancona. AOP for software evo-
lution: A design oriented approach. In 2005 ACM Symposium on Applied
Computing, pages 1346–1350, Santa Fe, New Mexico, USA, 2005. ACM.

[3] Reidar Conradi and Bernhard Westfechtel. Version models for software
configuration management. ACM Comput. Surv., 30(2):232–282, 1998.

[4] Simplice Djoko Djoko, RA c©mi Douence, Pascal Fradet, Didier LeBotlan,
and Mario SA1dholt. CASB : Common Aspect Semantics Base, 2006.

[5] Peter Dolog, Valentino VraniŠ, and Mßria Bielikovß. Representing change
by aspect. ACM SIGPLAN Notices, 36(12), December 2001.

[6] The Seasar Foundation. Seasar Home Page. http://www.seasar.org/.

[7] Simon Goldschmidt, Sven Junghagen, and Uri Harris. Strategic Affiliate
Marketing. Edward Elgar Publishing, 2003.

[8] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented pro-
gramming. In Mehmet Akşit and Satoshi Matsuoka, editors, Proceedings
European Conference on Object-Oriented Programming, volume 1241, pages
220–242. Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

[9] Axel Anders Kvale, Jingyue Li, and Reidar Conradi. A case study on
building cots-based system using aspect-oriented programming. In 2005
ACM Symposium on Applied Computing, pages 1491–1497, Santa Fe, New
Mexico, USA, 2005. ACM.

[10] Ramnivas Laddad. AspectJ in Action. Manninng, 2003.

43

http://www.seasar.org/

BIBLIOGRAPHY 44

[11] Ján Šarmír Peter Šimno Lukáš Šimon Jakub Vaňo Martin Nágl,
Jozef Slezák. Student Project Life Cycle Software Support. Team
project documentation, Slovak University of Technology in Bratislava, Slo-
vakia, 2006. In Slovak. Available at http://www2.dcs.elf.stuba.sk/
TeamProject/2006/team09/.

[12] Russell Miles. AspectJ Cookbook. O’Reilly, 2004.

[13] Odysseas Papapetrou and George A. Papadopoulos. Aspect oriented pro-
gramming for a componentbased real life application: A case study. In
2004 ACM Symposium on Applied Computing, pages 1554–1558, Nicosia,
Cyprus, 2004. ACM.

http://www2.dcs.elf.stuba.sk/TeamProject/2006/team09/
http://www2.dcs.elf.stuba.sk/TeamProject/2006/team09/

Appendix A

Implementation of YonBan
changes

A.1 Telephone Number Validator

A.1.1 Aspect

package sk.yonban.core.aspectchanges;

import org.springframework.validation.Validator;
import sk.yonban.core.web.SimpleDetailController;

public aspect PouzivatelInfoValidatorAspect {
private pointcut controllerInitialization(SimpleDetailController controller) :

execution(void sk.yonban.core.web.SimpleDetailController.afterPropertiesSet())
&& target(controller);

after(SimpleDetailController controller) : controllerInitialization(controller)
{

if (!controller.getBeanName().equals("pouzivatelInfoController")) {
return;

}
addValidator(controller);

}

private void addValidator(sk.yonban.core.web.SimpleDetailController controller) {
Validator validators[] = controller.getValidators();
Validator newValidators[] = new Validator[validators.length+1];
for (int i=0; i<validators.length; i++) {

newValidators[i] = validators[i];
}
newValidators[newValidators.length−1] = new PouzivatelInfoValidator();
controller.setValidators(newValidators);

}

45

APPENDIX A. IMPLEMENTATION OF YONBAN CHANGES 46

}

A.1.2 Validator Class

package sk.yonban.core.aspectchanges;

import org.springframework.validation.Errors;

import sk.yonban.model.command.PouzivatelInfoCommand;
import sk.yonban.validation.BaseValidator;

public class PouzivatelInfoValidator extends BaseValidator {

private static final String ERROR_POUZIVATEL_INFO_TELEFON_ERROR
= "error.pouzivatelInfo.telefonError";

public boolean supports(Class commandClass) {
return PouzivatelInfoCommand.class.equals(commandClass);

}

public void validate(Object cmd, Errors errors) {
PouzivatelInfoCommand command = (PouzivatelInfoCommand) cmd;
if (command == null || !validatePhoneNumber(command.getTelefon())) {

errors.rejectValue("telefon", ERROR_POUZIVATEL_INFO_TELEFON_ERROR);
}

}

private boolean validatePhoneNumber(String telefon) {
/∗ Telephone number validation ∗/

}
}

A.2 Telephone Number Formatter

package sk.yonban.aspectchanges;

public aspect TelephoneNumberFormatter {
private pointcut getTelefonPointcut():

execution(String sk.yonban.model.command.PouzivatelInfoCommand.getTelefon());

private String number;

String around(): getTelefonPointcut() {
number = proceed();
processTelephoneNumber();
return number;

}

private void processTelephoneNumber() {
if (number.startsWith("+") || number.startsWith("00")) {

APPENDIX A. IMPLEMENTATION OF YONBAN CHANGES 47

return;
}
if (number.startsWith("0")) {

number = number.substring(1);
number = "+421" + number;

}
}

}

A.3 Project Registration Statistics

package sk.yonban.aspectchanges;

import sk.yonban.model.Projekt;
import sk.yonban.model.Pouzivatel;

public aspect RegistrationStatistics {
after(Projekt projekt, Pouzivatel pouzivatel) :

execution(∗ sk.yonban.service.ProjektServiceImpl.registrujProjekt(..))
&& args(projekt, pouzivatel) {

// save project registration (pouzivatel, projekt) //
}

after(Projekt projekt, Pouzivatel pouzivatel) :
execution(∗ sk.yonban.service.ProjektServiceImpl.odregistrujProjekt(..))
&& args(projekt, pouzivatel) {

// save project unregistration (pouzivatel, projekt) //
}

}

A.4 Project Registration Constraint

package sk.yonban.aspectchanges;

import java.util.ArrayList;
import java.util.List;
import sk.yonban.model.Pouzivatel;
import sk.yonban.model.Projekt;

public aspect RegistrationConstraint {
private pointcut registerUser(Projekt projekt, Pouzivatel pouzivatel) :

execution(List<Error> sk.yonban.service.ProjektServiceImpl.registrujProjekt(..))
&& args(projekt, pouzivatel);

List<Error> around(Projekt projekt, Pouzivatel pouzivatel) :
registerUser(projekt, pouzivatel) {

if (pouzivatel.getEmail().length() == 0) {

APPENDIX A. IMPLEMENTATION OF YONBAN CHANGES 48

List<Error> errors = new ArrayList<Error>();
errors.add(new Error("User email can not be empty"));
return errors;

}
return proceed(projekt, pouzivatel);

}
}

A.5 Exception Logging

package sk.yonban.aspectchanges;

public aspect ExceptionLogger {
after() throwing(RuntimeException e): execution (∗ ∗.∗(..)) {

// log RuntimeException
}

after() throwing(Exception e): execution(∗ ∗.∗(..) throws ∗) {
// log Exception

}
}

A.6 Name Formatter

package sk.yonban.aspectchanges;

import sk.yonban.model.Pouzivatel;

public aspect NameFormatter {

String around(Pouzivatel pouzivatel):
execution(String sk.yonban.model.Pouzivatel.getCeleMeno())
&& target(pouzivatel) {

return getCeleMeno(pouzivatel);
}

private String getCeleMeno(Pouzivatel pouzivatel) {
// do new name formatting
return pouzivatel.getPriezvisko() + " " + pouzivatel.getMeno();

}
}

Appendix B

Attached CD-ROM Contents

The attached CD-ROM contains the following files and directories:

• /doc/AOChangeInWebApplications.pdf — this thesis

• /doc/AOChangeArticle.pdf — Evolution of Web Applications with Aspect-
Oriented Design Patterns

• /src/AOChange/ — Source code of the examples from Chapters 5 and 6

• /src/YonBan/ — Source code of the YonBan changes from Chapter 8 and
Appendix A

The /src/AOChange/ directory is an Eclipse project. To build it, the fol-
lowing is required:

• Eclipse1

• AspectJ Developement Tools2

The changes from /src/YonBan/ directory can be directly copied to the Yon-
Ban project and will be applied right after the project is converted to AspectJ
project.

1http://www.eclipse.org/downloads/
2http://www.eclipse.org/ajdt/downloads/

49

http://www.eclipse.org/downloads/
http://www.eclipse.org/ajdt/downloads/

Appendix C

Evolution of Web
Applications with
Aspect-Oriented Design
Patterns

Based on the main results of this Master’s thesis, the following paper has been
written:

Michal Bebjak, Valentino Vranić, and Peter Dolog. Evolution of
Web Applications with Aspect-Oriented Design Patterns. In Marco
Brambilla and Emilia Mendes, editors, Proc. of ICWE 2007 Work-
shops, 2nd International Workshop on Adaptation and Evolution in
Web Systems Engineering, AEWSE 2007, in conjunction with 7th
International Conference on Web Engineering, ICWE 2007, July 19,
2007, Como, Italy.

My contribution to this paper is approximately 60%. I contributed mainly
to Sections 1–4.

50

Evolution of Web Applications with
Aspect-Oriented Design Patterns

Michal Bebjak1, Valentino Vranić1, and Peter Dolog2

1 Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technology

Slovak University of Technology,
Ilkovičcova 3, 84216 Bratislava 4, Slovakia

bebjak02@student.fiit.stuba.sk, vranic@fiit.stuba.sk

2 Department of Computer Science
Aalborg University

Fredrik Bajers Vej 7, building E, DK-9220 Aalborg EAST, Denmark
dolog@cs.aau.dk

Abstract. It is more convenient to talk about changes in a domain-
specific way than to formulate them at the programming construct level
or—even worse—purely lexical level. Using aspect-oriented programming,
changes can be modularized and made reapplicable. In this paper, se-
lected change types in web applications are analyzed. They are expressed
in terms of general change types which, in turn, are implemented us-
ing aspect-oriented programming. Some of general change types match
aspect-oriented design patterns or their combinations.

1 Introduction

Changes are inseparable part of software evolution. Changes take place in the
process of development as well as during software maintenance. Huge costs and
low speed of implementation are characteristic to change implementation. Often,
change implementation implies a redesign of the whole application. The necessity
of improving the software adaptability is fairly evident.

Changes are usually specified as alterations of the base application behavior.
Sometimes, we need to revert a change, which would be best done if it was
expressed in a pluggable way. Another benefit of change pluggability is apparent
if it has to be reapplied. However, it is impossible to have a change implemented
to fit any context, but it would be sufficiently helpful if a change could be
extracted and applied to another version of the same base application. Such a
pluggability can be achieved by representing changes as aspects [5]. Some changes
appear as real crosscutting concerns in the sense of affecting many places in the
code, which is yet another reason for expressing them as aspects.

This would be especially useful in the customization of web applications.
Typically, a general web application is adapted to a certain context by a series
of changes. With arrival of a new version of the base application all these changes

have to be applied to it. In many occasions, the difference between the new and
the old application does not affect the structure of changes.

A successful application of aspect-oriented programming requires a struc-
tured base application. Well structured web applications are usually based on the
Model-View-Controller (MVC) pattern with three distinguishable layers: model
layer, presentation layer, and persistence layer.

The rest of the paper is organized as follows. Section 2 establishes a scenario
of changes in the process of adapting affiliate tracking software used throughout
the paper. Section 3 proposes aspect-oriented program schemes and patterns
that can be used to realize these changes. Section 4 identifies several interesting
change types in this scenario applicable to the whole range of web applications.
Section 5 envisions an aspect-oriented change realization framework and puts
the identified change types into the context of it. Section 6 discusses related
work. Section 7 presents conclusions and directions of further work.

2 Adapting Affiliate Tracking Software: A Change
Scenario

To illustrate our approach, we will employ a scenario of a web application
throughout the rest of the paper which undergoes a lively evolution: affiliate
tracking software. Affiliate tracking software is used to support the so-called
affiliate marketing [6], a method of advertising web businesses (merchants) at
third party web sites. The owners of the advertising web sites are called af-
filiates. They are being rewarded for each visitor, subscriber, sale, and so on.
Therefore, the main functions of such affiliate tracking software is to maintain
affiliates, compensation schemes for affiliates, and integration of the advertising
campaigns and associated scripts with the affiliates web sites.

In a simplified schema of affiliate marketing a customer visits an affiliate’s
page which refers him to the merchant page. When he buys something from the
merchant, the provision is given to the affiliate who referred the sale. A general
affiliate tracking software enables to manage affiliates, track sales referred by
these affiliates, and compute provisions for referred sales. It is also able to send
notifications about new sales, signed up affiliates, etc.

Suppose such a general affiliate tracking software is bought by a merchant
who runs an online music shop. The general affiliate software has to be adapted
through a series of changes. We assume the affiliate tracking software is prepared
to the integration with the shopping cart. One of the changes of the affiliate
tracking software is adding a backup SMTP server to ensure delivery of the
news, new marketing methods, etc., to the users.

The merchant wants to integrate the affiliate tracking software with the third
party newsletter which he uses. Every affiliate should be a member of the newslet-
ter. When selling music, it is important for him to know a genre of the music
which is promoted by his affiliates. We need to add the genre field to the generic
affiliate signup form and his profile screen to acquire the information about the
genre to be promoted at different affiliate web sites. To display it, we need to

modify the affiliate table of the merchant panel so it displays genre in a new
column. The marketing is managed by several co-workers with different roles.
Therefore, the database of the tracking software has to be updated with an ad-
ministrator account with limited permissions. A limited administrator should
not be able to decline or delete affiliates, nor modify campaigns and banners.

3 Aspect-Oriented Change Representation

In the AspectJ style of aspect-oriented programming, the crosscutting concerns
are captured in units called aspects. Aspects may contain fields and methods
much the same way the usual Java classes do, but what makes possible for them
to affect other code are genuine aspect-oriented constructs, namely: pointcuts,
which specify the places in the code to be affected, advices, which implement
the additional behavior before, after, or instead of the captured join point3, and
inter-type declarations, which enable introduction of new members into existing
types, as well as introduction of compile warnings and errors.

These constructs enable to affect a method with a code to be executed before,
after, or instead of it, which may be successfully used to implement any kind of
Method Substitution change (not presented here due to space limitations). Here
we will present two other aspect-oriented program schemes that can be used to
realize some common changes in web application. Such schemes may actually
be recognized as aspect-oriented design patterns, but it is not the intent of this
paper to explore this issue in detail.

3.1 Class Exchange

Sometimes, a class has to be exchanged with another one either in the whole
application, or in a part of it. This may be achieved by employing the Cuckoo’s
Egg design pattern [8]. A general code scheme is as follows:

public aspect ExchangeClass {
public pointcut exhangedClassConstructor(): call(ExchangedClass.new(..);
Object around(): exhangedClassConstructor() { return getExchangingObject();}
ExchangeObject getExchangingObject() {

if (. . .)
new ExchangingClass();

else
proceed();

}
}

The exhangedClassConstructor() is a pointcut that captures the ExchangedClass
constructor calls using the call() primitive pointcut. The around advice cap-
tures these calls and prevents the ExchangedClass instance from being created.
Instead, it calls the getExchangingObject() method which implements the ex-
change logic. ExchangingClass has to be a subtype of ExchangedClass.
3 Join points represent well-defined places in the program execution.

The example above sketches the case in which we need to allow the construc-
tion of the original class instance under some circumstances. A more complicated
case would involve several exchanging classes each of which would be appropriate
under different conditions. This conditional logic could be implemented in the
getExchangingObject() method or—if location based—by appropriate pointcuts.

3.2 Perform an Action After an Event

We often need to perform some action after an event, such as sending a noti-
fication, unlocking product download for user after sale, displaying some user
interface control, performing some business logic, etc. Since events are actually
represented by method calls, the desired action can be implemented in an after
advice:

public aspect AdditionalReturnValueProcessing {
pointcut methodCallsPointcut(TargetClass t, int a): . . .;
after(/∗ captured arguments ∗/): methodCallsPointcut(/∗ captured arguments ∗/) {

performAction(/∗ captured arguments ∗/);
}
private void performAction(/∗ arguments ∗/) { /∗ action logic ∗/ }

}

4 Changes in Web Applications

The changes which are required by our scenario include integration changes,
grid display changes, input form changes, user rights management changes, user
interface adaptation, and resource backup. These changes are applicable to the
whole range of web applications. Here we will discuss three selected changes and
their realization.

4.1 Integration Changes

Web applications often have to be integrated with other systems (usually other
web applications). Integration with a newsletter in our scenario is a typical
example of one way integration. When an affiliate signs up to the affiliate tracking
software, we want to sign him up to a newsletter, too. When the affiliate account
is deleted, he should be removed from the newsletter, too.

The essence of this integration type is one way notification: only the integrat-
ing application notifies the integrated application of relevant events. In our case,
such events are the affiliate signup and affiliate account deletion. A user can be
signed up or signed out from the newsletter by posting his e-mail and name to
the one of the newsletter scripts. Such an integration corresponds to the Perform
an Action After an Event change (see Sect. 3.2). In the after advice we will make
a post to the newsletter sign up/sign out script and pass it the e-mail address
and name of the newly signed up or deleted affiliate. We can seamlessly combine
multiple one way integrations to integrate a system with several systems.

Introducing a two way integration can be seen as two one way integration
changes: one applied to each system. A typical example of such a change is data
synchronization (e.g., synchronization of user accounts) across multiple systems.
When the user changes his profile in one of the systems, these changes should be
visible in all of them. For example, we may want to have a forum for affiliates. To
make it convenient to affiliates, user accounts of the forum and affiliate tracking
system should be synchronized.

4.2 Introducing User Rights Management

Many web applications don’t implement user rights management. If the web ap-
plication is structured appropriately, it should be possible to specify user rights
upon the individual objects and their methods, which is a precondition for ap-
plying aspect-oriented programming.

User rights management can be implemented as a Border Control design
pattern [8]. According to our scenario, we have to create a restricted adminis-
trator account that will prevent the administrator from modifying campaigns
and banners and decline/delete affiliates. All the methods for campaigns and
banners are located in the campaigns and banners packages. The appropriate
region specification will be as follows:

pointcut prohibitedRegion(): (within(application.Proxy) && call(void ∗.∗(..)))
|| (within(application.campaigns.+) && call(void ∗.∗(..)))
|| within(application.banners.+)
|| call(void Affiliate.decline(..)) || call(void Affiliate.delete(..));

}

Subsequently, we have to create an around advice which will check whether
the user has rights to access the specified region. This can be implemented using
the Method Substitution change applied to the pointcut specified above.

4.3 Introducing a Resource Backup

As specified in our scenario, we would like to have a backup SMTP server for
sending notifications. Each time the affiliate tracking software needs to send
a notification, it creates an instance of the SMTPServer class which handles
the connection to the SMTP server and sends an e-mail. The change to be
implemented will ensure employing the backup server if the connection to the
primary server fails. This change can be implemented straightforwardly as a
Class Exchange (see Sect. 3.1)

5 Aspect-Oriented Change Realization Framework

The previous two sections have demonstrated how aspect-oriented programming
can be used in the evolution of web applications. Change realizations we have
proposed actually cover a broad range of changes independent of the application

domain. Each change realization is accompanied by its own specification. On the
other hand, the initial description of the changes to be applied in our scenario
is application specific. With respect to its specification, each application specific
change can be seen as a specialization of some generally applicable change. This
is depicted in Fig. 1 in which a general change with two specializations is pre-
sented. However, the realization of such a change is application specific. Thus, we
determine the generally applicable change whose specialization our application
specific change is and adapt its realization scheme.

Fig. 1. General and specific changes with realization.

When planning changes, it is more convenient to think in a domain specific
manner than to cope with programming language specific issues directly. In
other words, it is much easier to select a change specified in an application
specific manner than to decide for one of the generally applicable changes. For
example, in our scenario, an introduction of a backup SMTP server was needed.
This is easily identified as a resource backup, which subsequently brings us to
the realization in the form of the Class Exchange.

6 Related Work

Various researchers have concentrated on the notion of evolution from automatic
adaptation point of view. Evolutionary actions which are applied when partic-
ular events occur have been introduced [9]. The actions usually affect content
presentation and navigation. Similarly, active rules have been proposed for adap-
tive web applications with the focus on evolution [4]. However, we see evolution
as changes of the base application introduced in a specific context. We use aspect
orientation to modularize the changes and reapply them when needed.

Our work is based on early work on aspect-oriented change management [5].
We argue that this approach is applicable in wider context if supported by a ver-
sion model for aspect dependency management [10] and with appropriate aspect
model that enables to control aspect recursion and stratification [1]. Aspect-
oriented programming community explored several specific issues in software
evolution such as database schema evolution with aspects [7] or aspect-oriented
extensions of business processes and web services with crosscutting concerns of
reliability, security, and transactions [3]. However, we are not aware of any work
aiming specifically at capturing changes by aspects in web applications.

7 Conclusions and Further Work

We have proposed an approach to web application evolution in which changes
are represented by aspect-oriented design patterns and program schemes. We
identified several change types that occur in web applications as evolution or
customization steps and discussed selected ones along with their realization. We
also envisioned an aspect-oriented change realization framework.

To support the process of change selection, the catalogue of changes is needed
in which the generalization-specialization relationships between change types
would be explicitly established. We plan to search for further change types and
their realizations. It is also necessary to explore change interactions and evaluate
the approach practically.

Acknowledgements The work was supported by the Scientific Grant Agency
of Slovak Republic (VEGA) grant No. VG 1/3102/06 and Science and Technol-
ogy Assistance Agency of Slovak Republic contract No. APVT-20-007104.

References

[1] E. Bodden, F. Forster, and F. Steimann. Avoiding infinite recursion with stratified
aspects. In Robert Hirschfeld et al., editors, Proc. of NODe 2006, LNI P-88, pages
49–64, Erfurt, Germany, September 2006. GI.

[2] S. Casteleyn et al. Considering additional adaptation concerns in the design of
web applications. In Proc. of 4th Int. Conf. on Adaptive Hypermedia and Adaptive
Web-Based Systems (AH2006), LNCS 4018, Dublin, Ireland, June 2006. Springer.

[3] A. Charfi et al. Reliable, secure, and transacted web service compositions with
ao4bpel. In 4th IEEE European Conf. on Web Services (ECOWS 2006), pages
23–34, Zürich, Switzerland, December 2006. IEEE Computer Society.

[4] F. Daniel, M. Matera, and G. Pozzi. Combining conceptual modeling and active
rules for the design of adaptive web applications. In Workshop Proc. of 6th Int.
Conf. on Web Engineering (ICWE 2006), New York, NY, USA, 2006. ACM Press.

[5] P. Dolog, V. Vranić, and M. Bieliková. Representing change by aspect. ACM
SIGPLAN Notices, 36(12):77–83, December 2001.

[6] S. Goldschmidt, S. Junghagen, and U. Harris. Strategic Affiliate Marketing. Ed-
ward Elgar Publishing, 2003.

[7] R. Green and A. Rashid. An aspect-oriented framework for schema evolution in
object-oriented databases. In Proc. of the Workshop on Aspects, Components and
Patterns for Infrastructure Software (in conjunction with AOSD 2002), Enschede,
Netherlands, April 2002.

[8] R. Miles. AspectJ Cookbook. O’Reilly, 2004.
[9] F. Molina-Ortiz, N. Medina-Medina, and L. Garćıa-Cabrera. An author tool based

on SEM-HP for the creation and evolution of adaptive hypermedia systems. In
Workshop Proc. of 6th Int. Conf. on Web Engineering (ICWE 2006), New York,
NY, USA, 2006. ACM Press.

[10] E. Pulvermüller, A. Speck, and J. O. Coplien. A version model for aspect depen-
dency management. In Proc. of 3rd Int. Conf. on Generative and Component-
Based Software Engineering (GCSE 2001), LNCS 2186, pages 70–79, Erfurt, Ger-
many, September 2001. Springer.

	Introduction
	Aspect-Oriented Programming
	Main Concepts of Aspect-Oriented Programming
	Join points
	Pointcuts
	Advices

	The AspectJ Approach to Aspect-Oriented Programming
	Join Points
	Pointcuts
	Advices
	Intertype Declaratiosn
	Compile-time Declaration

	Aspect-oriented Languages

	Change Control
	Change Categorization
	Bug Fixes
	Change Requests
	Customizations

	Comparing Object-oriented and Aspect-oriented Approach to Change Control
	Capability of Web Applications for Changes
	Unstructured Applications
	Structured Applications
	Domain Layer
	Presentation Layer
	Persistence Layer

	Adapting Affiliate Tracking Software: A Change Scenario
	Aspect-Oriented Change Realization
	Class Exchange
	Method Substitution
	Enumeration Modification
	Additional Parameter Checking
	Additional Return Value Checking/Modification
	Performing Action After Event
	Logging

	Applying Changes to Web Applications
	Integration Changes
	Grid Display Changes
	Input Form Changes
	Introducing User Rights Management
	User Interface Restriction
	Introducing a Resource Backup

	Aspect-Oriented Change Realization Framework
	Model of Change Realization Framework
	Implementing Changes of Changes
	Multi-Layer Model
	Two-Layer Model

	The Approach Evaluation
	YonBan
	Implemented Changes
	Telephone Number Validator
	Telephone Number Formatter
	Project Registration Statistics
	Project Registration Constraint
	Exception Logging
	Name Formatter

	Conclusion

	The Seasar Framework for Aspect-Oriented Programming in PHP
	The Seasar Framework Overview
	Seasar Aspect-Oriented Programming Compared to the AspectJ Approach
	Seasar Basics

	Implementing More Complex Aspect-Oriented Constructs in Seasar

	Conclusions and Further Work
	Implementation of YonBan changes
	Telephone Number Validator
	Aspect
	Validator Class

	Telephone Number Formatter
	Project Registration Statistics
	Project Registration Constraint
	Exception Logging
	Name Formatter

	Attached CD-ROM Contents
	Evolution of Web Applications with Aspect-Oriented Design Patterns

