
Usability of AspectJ from the Performance

Perspective
Erik Šuta, Ivan Martoš, and Valentino Vranić

Institute of Informatics and Software Engineering

Faculty of Informatics and Information Technologies

Slovak University of Technology in Bratislava, Slovakia

suta.erik@gmail.com, martos.ivan@gmail.com, vranic@stuba.sk

Abstract—While performance is one of the most important attributes of computation intensive systems such as complex event pro-

cessing, it is essential to success of mobile devices and embedded systems, in which providing seamless experience to end users is of ut-

termost importance. In this paper, we present a framework we designed to assess AspectJ performance both in desktop and mobile set-

tings. We applied this framework to measure the performance of the current AspectJ version and to provide a comparison with its older

versions. One of the important findings is that while in desktop settings vast aspect application does not generate significantly bigger

performance overhead than their scarce application, in mobile devices it does, so it pays off to apply aspects rather to a small number of

high time complexity methods than to a large number of low time complexity methods.

Keywords—aspect-oriented programming; AspectJ; performance; Android; mobile applications

I. INTRODUCTION

Aspect-oriented programming makes possible to separate

concerns that otherwise would be entangled. Although it can

be used right from the start of the software development pro-

cess, it is more popular as a way of introducing changes into

existing applications without having to change the existing

code [1, 2]. However, the benefits of using aspect-oriented

programming and AspectJ as a reference aspect-oriented lan-

guage [3] have always been overshadowed by impaired per-

formance.

While performance is one of the most important attributes

of computation intensive systems such as complex event pro-

cessing [4, 5], it is essential to success of mobile devices and

embedded systems, in which providing seamless experience to

end users is of uttermost importance. Applications written

with performance in mind are also eco-friendly since they

utilize CPU cycles better, thus reducing energy consumption.

In this paper, we propose a framework we designed to as-

sess AspectJ performance both in desktop and mobile settings.

We applied this framework to measure the performance of the

current AspectJ version and to provide a comparison with its

older versions.

The rest of the paper is structured as follows. Section II

presents an overview of selected approaches to measuring

AspectJ performance. Section III presents our measuring

framework. In Section IV the performance measurement re-

sults are provided and discussed. Section V concludes the

paper.

II. SELECTED APPROACHES TO MEASURING ASPECTJ PER-

FORMANCE

The performance of aspect-oriented programming imple-

mentation is one of the most important indicators of approach

maturity and readiness for production usage. AspectJ and its

performance has been discussed in hundreds of papers. How-

ever, on a closer look, it is quite surprising that most of them

lack concrete figures. Put in other words, the ratio of the pa-

pers just discussing performance and papers providing actual

performance measurements and results is very small. The cre-

ators of AspectWerkz
1
 framework have conducted one such

measurement in December 2004 [6]. They focused on the

comparison of existing approaches to aspect-oriented pro-

gramming with the goal to identify advice or interceptor over-

head. While in AspectJ the overhead ranged from 10 to 50 ns

1 http://aspectwerkz.codehaus.org/

(with exception of the after throwing advice with the overhead

of 3009 ns), Spring AOP exhibited the overhead from 275 to

445 ns.

Another interesting approach to measuring AspectJ perfor-

mance overhead was introduced by Dufour et al. [7]. The pro-

posed solution consists of introducing new metrics for captur-

ing dynamic behavior of AspectJ applications. They also pro-

vided tools to capture and evaluate these metrics:

 A modified version of AspectJ compiler that was

able to tag bytecode instructions and determine the

cause of their generation (e.g., if the instruction was

generated by an aspect intrusion or not)

 A modified version of the *J dynamic metrics collec-

tion tool composed of a JVMPI-based
2
 generator and

analyzer that propagates the tags and computes new

proposed metrics

In addition to the above mentioned contributions, their

work also contained a set of benchmarks to evaluate the per-

formance of the AspectJ framework.

Avgustinov et al. [8] focused on optimizing a code genera-

tion strategy to increase the overall AspectJ performance.

They addressed several issues. One of them was the compila-

tion of the around advice, which is a very challenging task.

Avgustinov et al. proposed a new compilation strategy that

avoids previously used approaches, such as the usage of ex-

cessive inlining and closures. As shown in the benchmark

results provided in the paper, the proposed approach leads to

performance improvements. It was later accepted by AspectJ

developers and integrated into the ajc compiler (version 1.2.1).

Another issue was the optimization of the cflow pointcut. As

stated by Avgustinov et al., previously used techniques were

costly both in terms of space and time, so they introduced new

techniques to minimize the overhead and improve the cflow

pointcut performance. Also, Avgustinov et al. addressed the

issue of structuring and optimizing compiler so that traditional

analyses can be easily adapted to the aspect-oriented pro-

gramming setting..

Of course, a great optimization effort has been conducted

by the developers of the AspectJ language themselves. Many

minor releases of AspectJ were actually aimed at performance

improvements and introduced no new features. A particularly

interesting area of optimization is the load time weaving. In

2 JVMPI – Java Virtual Machine Profiling Interface

http://aspectwerkz.codehaus.org/

AspectJ version 1.6.7,
3
 load time weaving performance im-

provements were introduced. The source of improvements

was mostly the optimization of include/exclude patterns, sev-

eral of which have been optimized [9]: the exact name pattern

(e.g., com.foo.Bar), trailing suffix (e.g., *Bar), types not in

included the default package containing a string, and any type

pattern (*). This significantly improved the statup time and

heap usage.

III. PERFORMANCE MEASUREMENT FRAMEWORK

AspectJ is an open-source project maintained by the

Eclipse Foundation. AspectJ is actually an extension to the

Java programming language as any legal Java program is also

a legal AspectJ program.

Due to the very specific nature of AspectJ and aspect-

oriented programming in general it is not easy to choose an

adequate approach to measure AspectJ performance. We de-

cided to take an AspectJ developer perspective concerned with

the exact performance overhead that may be expected from

using aspects in order to make a qualified decision whether to

apply aspects or not in each particular case.

To provide as exact as possible overhead prediction, we

created ten tests that are focused on different aspects of Java:

 Ackermann function calculation
4
 (deep recursion)

 Fibonacci sequence calculation (branching recursion)

 Large matrix computation (matrix operations)

 Nested loop execution (loop handling)

 Random generation of double numbers (random gen-

eration)

 Prime numbers calculation (arithmetic operations)

 Vast string concatenation (working with string val-

ues)

 Read of a long text file (working with I/O)

 Quicksort algorithm (sorting)

 Object instantiation (memory allocation)

Of course, the performance overhead of using AspectJ de-

pends on the extent of aspect usage. In other words, it seems

logical that the bigger the number of methods wrapped by

aspects, the greater the performance overhead will be. To an-

swer this question, we measured the overhead in two types of

aspect application:

 Coarse-grained application, in which only the opera-

tions of high time complexity are being affected by

aspects

 Fine-grained application, in which many calls to the

operations of low time complexity are being affected

by aspects, too

The tests are assembled into an AspectJ performance meas-

urement framework.
5
 Our framework targets all three basic

advice types: around, before, and after. The performance

overhead is also introduced by the code generated and execut-

3 http://eclipse.org/aspectj/doc/released/README-167.html
4http://www.encyclopediaofmath.org/index.php/Ackermann_function
5 available at https://github.com/eriksuta/AspectJ-Performance-

Measurement-Framework

ed in advices themselves. However, this overhead is not im-

portant for the evaluation of general performance cost of as-

pect usage. Thus, the advices used in our framework are emp-

ty.

IV. MEASUREMENT RESULTS

The tests introduced in the previous section were conducted

a million times to minimize the error rate of measurement

methods. The target of measurement is the duration or the

time cost of introducing aspects into a Java application. To

measure this cost, we used standard measurement methods

from the Java API, and the System.nanoTime() method in

particular. The problem with using this method can be best

expressed by quoting the documentation:
6
 “This method pro-

vides nanosecond precision, but not necessarily nanosecond

resolution (that is, how frequently the value changes)—no

guarantees are made except that the resolution is at least as

good as that of currentTimeMillis().” This problem can be

eliminated by conducting a big number of tests. Of course, we

cannot eliminate these inconsistencies completely, so our re-

sults inevitably embrace some inaccuracy. All the results in-

troduced here were normalized.

A. Desktop Setting

The first tests were conducted on AspectJ 1.8.4. We fo-

cused on determining the cost of the before, after, and around

advice. The data can be seen in Fig. 1. It can be clearly seen

that the around advice is the one that adds the most perfor-

mance overhead to the target application. This trend can be

seen almost in all tests from our framework. Another observa-

tion is that the before advice adds slightly less performance

overhead than the after advice.

0 2000 4000 6000 8000 10000

Ack

Fib

Mat

NL

RG

PN

SC

RF

Sort

Inst

te
st

time [ns]

Around

After

Before

No
Aspects

Fig. 1. The normalized measurement results for the after, before and around

advice, as well as for code with no aspects.

6 http://docs.oracle.com/javase/7/docs/api/java/lang/System.html#nan

oTime()

http://eclipse.org/aspectj/doc/released/README-167.html
http://www.encyclopediaofmath.org/index.php/Ackermann_function
https://github.com/eriksuta/AspectJ-Performance-Measurement-Framework
https://github.com/eriksuta/AspectJ-Performance-Measurement-Framework
http://docs.oracle.com/javase/7/docs/api/java/lang/System.html#nanoTime()
http://docs.oracle.com/javase/7/docs/api/java/lang/System.html#nanoTime()

In the next phase of testing, we have focused on the overall

performance improvements of AspectJ during its history. For

these purposes, we have chosen the around advice, because

since its usage adds the most significant performance over-

head, the difference among AspectJ versions would be more

visible. We tested AspectJ versions 1.5.0, 1.6.0, 1.6.7, 1.6.13,

1.7.4, and 1.8.4. As can be seen in Fig. 2, over time the As-

pectJ performance overhead had a decreasing tendency. De-

spite our great effort to minimize the error in measurements,

we can clearly see that the results exhibit some inaccuracy,

such as a newer versions performing slightly worse than an

older version or a no aspects case performing worse than one

with aspects.

We made a set of measurements aimed at differentiating the

overhead generated by coarse-grained and fine-grained aspect

application. The results can be seen in Fig. 3. This test provid-

ed probably the most surprising results. We expected fine-

grained aspect application tests to generate much bigger over-

head than the coarse-grained ones. These expectations were

not met and as we can clearly see the overhead, while it is

clearly present, is in general not that significant even in fine-

grained tests.

B. Android Setting

We repeated the measurements on an Android mobile de-

vice with the ART virtual machine (a Java virtual machine

type) with a clean Android installation (5.0.1). The original

test suite had to be slightly altered for performance reasons.

For example, we had to omit the test with the reading of a

long text file. Again, measurement results were normalized.

As can be seen in Fig. 4, while a rich use of aspects in code on

desktop devices (devices with much higher computational

capacity and resources) did not cause significant performance

overhead, the situation is different on mobile devices. Espe-

cially in tests with recursion (Ack, Fib) or tests with vast num-

ber of method calls (nested loop, instantiation) the rich use of

aspects can cause dramatic performance overhead.

V. RELATED WORK

As has been pointed out in Section II, there is a lack of re-

search providing concrete figures regarding performance

overhead generated by AspectJ usage. One of early measure-

ments was conducted by the creators of the AspectWerkz as-

pect-oriented framework in 2004 [6]. However, their approach

is more focused on the performance comparison of different

aspect-oriented frameworks.

Romanoff and Meyer [10] took a different approach. They

measured the difference in performance between pure Java

and AspectJ solutions to the set of common problems.

Dufour et al. [7] proposed eight AspectJ benchmarks based

on their dynamic metrics. The benchmarks focus on parts of

AspectJ not covered by our work, such as performance of in-

ter-type declarations.

VI. CONCLUSIONS AND FURTHER WORK

We conducted a series of performance measurements in As-

pectJ programming language. For this, we designed a frame-

work that can be used to measure AspectJ performance on

both desktop and mobile devices. The framework provides ten

different tests each of which aims at capturing different as-

pects of the Java programming language and by this different

situation for the use of aspects. We measured the overhead of

all three basic advice types. We also addressed coarse-grained

and fine-grained aspect application.

0 2000 4000 6000 8000 10000

Ack

Fib

Mat

NL

RG

PN

SC

RF

Sort

Inst

te
st

time [ns]

1.8.4

1.7.4

1.6.13

1.6.7

1.6.0

1.5.0

No
Aspects

Fig. 2. Overhead in AspectJ over time.

0 2000 4000 6000 8000 10000

Ack

Mat

RG

SC

Sort

te
st

time [ns]

Fine

Coarse

No
Aspects

Fig. 3. The difference between fine-grained and coarse-grained aspect appli-

cation.

0 2000 4000 6000 8000

Ack

Fib

Mat

NL

RG

PN

SC

Sort

Inst
te

st

time [ns]

Fine
(Around)

Fine
(After)

Fine
(Before)

Coarse
(Around)

No
Aspects

Fig. 4. Measurement results from test run on Android mobile device (AspectJ

version 1.7.3).

From the measurement results, the following conclusions

can be drawn:

 While in desktop settings vast aspect application

does not generate significantly bigger performance

overhead than their scarce application, in mobile de-

vices it does, so it pays off to apply aspects rather to

a small number of high time complexity methods

than to a large number of low time complexity meth-

ods.

 The before advice generates less performance over-

head than the after advice (on both mobile and desk-

top devices). As it was expected, the around advice

generates the biggest performance overhead.

 In the AspectJ evolution, the developers clearly took

performance overhead as a serious topic and invested

a lot in its improvement. That can be clearly seen in

our measurements with different AspectJ versions.

Our performance measurement framework can be applied

to forthcoming AspectJ versions, too, so developers can easily

track how is performance affected there. The framework can

certainly be improved by addressing further AspectJ features,

such as control flow pointcut or after returning and after

throwing advice. Another direction of further work might be

to embrace performance measurement in profiling efforts, in

which aspect-oriented programming has already been applied

to some extent [11].

ACKNOWLEDGMENTS

The work reported here was supported by the Scientific

Grant Agency of Slovak Republic (VEGA) under the grant No.

VG 1/1221/12.

This contribution/publication is also a partial result of the

Research & Development Operational Programme for the

project Research of Methods for Acquisition, Analysis and

Personalized Conveying of Information and Knowledge,

ITMS 26240220039, co-funded by the ERDF.

REFERENCES

[1] V. Vranić, R. Menkyna, M. Bebjak, and P. Dolog, “Aspect-Oriented

Change Realizations and Their Interaction,” e-Informatica Software

Engineering Journal, vol. 3, num. 1, 2009, pp. 43–58.

[2] R. Menkyna and V. Vranić, “Aspect-Oriented Change Realization

Based on Multi-Paradigm Design with Feature Modeling,” in Proceed-
ings of 4th IFIP TC2 Central and East European Conference on Soft-

ware Engineering Techniques, CEE-SET 2009, Revised Selected Pa-

pers, LNCS 7054, 2009, Krakow, Poland, Springer, 2012.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.

Loingtier, and J. Irwin, “Aspect-Oriented Programming,” in Proceed-
ings of 11th European Conference on Object-Oriented Programming,

ECOOP’97, LNCS 1241, Springer, 1997, pp. 220–242.

[4] J. Lang, M. Jantošovič, I. Polášek, “Re-Usability in Complex Event
Pattern Monitoring,” in Proceedings of IEEE 10th Jubilee International

Symposium on Aplied Machine Intelligence and Informatics, Herľany,

Slovakia, IEEE, 2012, pp. 265–270.

[5] J. Lang, J. Janík, “Reactive Distributed System Modeling Supported by

Complex Event Processing,” in Proceedings of ECBS-EERC 2013, 3rd
Eastern European Regional Conference on the Engineering of Comput-

er Based Systems, Budapest, Hungary, IEEE CS, 2013, pp. 163–164..

[6] A. Vasseur, “AOP Benchmark.”
http://docs.codehaus.org/display/AW/AOP+Benchmark

[7] B. Dufour et al., “Measuring the Dynamic Behaviour of AspectJ Pro-
grams,” ACM SIGPLAN Notices, vol. 39, num. 10, 2004.

[8] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhoták, O.

de Moor, D. Sereni, G. Sittampalam, and J. Tibble, “Optimising As-
pectJ,” in Proceedings of the ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, Chicago, IL, USA,

ACM, 2005.

[9] A. Clement, “AspectJ 1.6.7 and Faster Load Time Weaving.”

http://andrewclement.blogspot.sk/2009/12/aspectj-167-and-faster-load-
time.html

[10] E. Romanoff and J. Meyer, “The Performance of AspectJ,” March 19,

2010. http://www.cs.rit.edu/~ear7631/aop/AOPWriteUpPDF.pdf

[11] J. Porubän, J. Kollár, and M. Vidiščak, “Aspect-Oriented Program

Profiling,” in Proceedings of 8th International Conference on Engineer-
ing of Modern Electric Systems, Felix Spa-Oradea, Romania, 2005, pp.

112–117.

http://docs.codehaus.org/display/AW/AOP+Benchmark
http://andrewclement.blogspot.sk/2009/12/aspectj-167-and-faster-load-time.html
http://andrewclement.blogspot.sk/2009/12/aspectj-167-and-faster-load-time.html
http://www.cs.rit.edu/~ear7631/aop/AOPWriteUpPDF.pdf

