
Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Replacing Object-Oriented Design Patterns with
Intrinsic Aspect-Oriented Design Patterns

Pavol Bača Valentino Vranić

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies
Slovak University of Technology, Bratislava, Slovakia

vranic@fiit.stuba.sk

ECBS-EERC 2011, September 5–6, 2011, Bratislava, Slovakia

1 / 23



Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Overview

1 Object-Oriented Design Patterns and Aspect-Oriented
Programming

2 Replacing Object-Oriented Patterns

3 Evaluation: Design Pattern Composition

4 Summary

2 / 23



Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Object-Oriented Design Patterns and Aspect-Oriented Programming

Design Pattern Composition

Object-oriented design patterns—and especially GoF1

patterns—are a part of software developers’ everyday
vocabulary
Patterns are applied mostly individually (contradictory to the
idea of pattern languages), but they are often composed
The very application of an object-oriented pattern involves it
being interleaved with application logic
Composition makes patterns interleaved with each other

1E. Gamma. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

3 / 23



Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Object-Oriented Design Patterns and Aspect-Oriented Programming

A Pattern as a Concern: How to Separate It

A pattern may be viewed as a concern
We’d like to have concerns separated
But patterns appear to crosscut application logic concerns
Where object-orientation can’t help anymore, there comes
aspect-orientation: separation of crosscutting concerns
Aspect-oriented reimplementations of object-oriented patterns
resolve pattern crosscutting of application logic concerns2

A qualitative and quantitative assessment showed this is not so
with respect to pattern composition3

2J. Hannemann and G. Kiczales. Design pattern implementation in Java and AspectJ. In Proc. of
17th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2002, Seattle, Washington, USA. ACM, 2002.

3N. Cacho et al. Composing design patterns: A scalability study of aspect-oriented programming. In
Proc. of 5th International Conference on Aspect-Oriented Software Development, AOSD 2006, Bonn,
Germany. ACM, 2006.

4 / 23



Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Object-Oriented Design Patterns and Aspect-Oriented Programming

Aspect-Oriented Patterns and Composition

There are patterns intrinsic to aspect-oriented programming:
not applicable in object-oriented programming
These patterns often can be composed by simply including
them in the implementation without having to modify it
We observed that some aspect-oriented reimplementations of
object-oriented patterns actually represent intrinsic
aspect-oriented patterns

5 / 23



Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Object-Oriented Design Patterns and Aspect-Oriented Programming

Use Intrinsic Aspect-Oriented Patterns Instead

Our idea: use intrinsic aspect-oriented patterns to benefit from
their simple and separated composition
This involved

Finding intrinsic aspect-oriented patterns that correspond to
aspect-oriented reimplementations of object-oriented patterns
Evaluating them in composition to see whether they behave as
the original object-oriented patterns

We worked with three aspect-oriented patterns
Director
Worker Object Creation
Cuckoo’s Egg

6 / 23



Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Replacing Object-Oriented Patterns

The Director Case

Director was our original inspiration for its ability to replace
many object-oriented patterns, but. . .
It actually addresses the problem of separating the generic
reusable behavior from the specific implementation in classes
This is done by enforcing the corresponding roles of behavior
to classes
Key parts of the GoF patterns “replaced” by Director remain
Director is actually just oblivious to the problems addressed by
these patterns and can’t be counted as their substitution

7 / 23



Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Replacing Object-Oriented Patterns

Worker Object Creation (1)

Worker Object Creation4 separates the functionality from
managing its execution by enveloping it into a worker object
A worker object is then sent for execution to a different
context—usually in another thread

void around() : <pointcut> {
Runnable worker = new Runnable () {

public void run() {
proceed();

}
invoke.Queue.add(worker); // execution − possibly deferred

}

4R. Laddad. AspectJ in Action: Enterprise AOP with Spring Applications. Second edition, Manning,
2009.

8 / 23



Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Replacing Object-Oriented Patterns

Worker Object Creation (2)

A popular application: catch the calls to GUI controls in Swing
and have them executed in its event dispatching thread

EventQueue.invokeLater(new Runnable() {
public void run() {

. . .
}

});

Proxy shields the functionality of an object by another, proxy
object
This can be done at object creation time by providing the
proxy object

9 / 23



Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Replacing Object-Oriented Patterns

Worker Object Creation (3)

An example: optimizing toolbar creation

public aspect ToolbarProxy {
public ToolbarImpl.new(ToolbarProxy a) {
}
ToolbarImpl around(): call(ToolbarImpl.new()) {

return new ToolbarImpl(this) { // the proxy class
private ToolbarImpl toolbarImpl;

public void setVisible(boolean visible) {
if (toolbarImpl == null)

toolbarImpl = proceed();

toolbarImpl.setVisible(visible);
}
... // other methods using the original class instance

};
}

} 10 / 23



Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Replacing Object-Oriented Patterns

Cuckoo’s Egg

Cuckoo’s Egg5 enables to exchange an object of one type with
an object of another type
This is achieved by capturing constructor or factory method
calls
public aspect MyClassSwapper {

public pointcut myConstructors(): call(MyClass.new());

Object around(): myConstructors() {
return new AnotherClass();

}
}

Applied instead of three GoF patterns: Singleton, Abstract
Factory, and Flyweight
Singleton: catch a constructor and look up an existing instance

5R. Miles. AspectJ Cookbook. O’Reilly, 2004.
11 / 23



Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Replacing Object-Oriented Patterns

Cuckoo’s Egg Instead of Abstract Factory

Abstract Factory is used to provide an interface for creating
families of objects without specifying the classes
Abstract factory methods can be introduced by an aspect

12 / 23



Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Replacing Object-Oriented Patterns

Cuckoo’s Egg Instead of Flyweight

Flyweight is used to avoid a huge memory consumption by a
number of equal objects
Like Singleton, but involves checking the existence of each
instance

13 / 23



Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Evaluation: Design Pattern Composition

The Study

To check that our pattern replacements are valid beyond their
isolated application, we conducted a small study based on the
implementation of a toy graphic tool6

The tool supports drawing simple geometric shapes and
writing text
2D and 3D mode statically configured before the tool is started
The toolbar, tool buttons, and image gallery created upon a
user demand

6
http://fiit.stuba.sk/~vranic/proj/dp/Baca/aoOoPatterns.zip

14 / 23

http://fiit.stuba.sk/~vranic/proj/dp/Baca/aoOoPatterns.zip


Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Evaluation: Design Pattern Composition

The Patterns

The study provided an opportunity to implement six pairs of
pattern compositions

Abstract Factory + Singleton
Proxy + Abstract Factory
Proxy + Singleton
Singleton + Flyweight
Abstract Factory + Flyweight
Proxy + Flyweight

These have been implemented in three ways by
1 Object-oriented original pattern implementation
2 Aspect-oriented pattern reimplementation
3 Intrinsic aspect-oriented patterns

15 / 23



Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Evaluation: Design Pattern Composition

Aspect-Oriented Reimplementation

The aspect-oriented reimplementation was developed to
demonstrate an aspect-oriented solution is indeed possible
Hannemann–Kiczales7 aspect-oriented reimplementations of
GoF patterns have been applied

7J. Hannemann and G. Kiczales. Design pattern implementation in Java and AspectJ. In Proc. of
17th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2002, Seattle, Washington, USA. ACM, 2002.

16 / 23



Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Evaluation: Design Pattern Composition

Implementation with Intrinsic Aspect-Oriented Patterns

Aforementioned intrinsic aspect-oriented patterns have been
successfully applied in the paired compositions of GoF patterns
A few deviations from the original object-oriented
implementation showed up:

No explicit Singleton implementation: the only instance of
Abstract Factory—i.e., the Cuckoo’s Egg aspect—is ensured
by an implicit issingleton() aspect instantiation modifier
A conflict between the pointcuts implemented in Cuckoo’s Egg
and Worker Object Creation: resolved by a declare precedence
statement

17 / 23



Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Evaluation: Design Pattern Composition

Observations

Intrinsic aspect-oriented patterns are less generic than the
aspect-oriented reimplementations of object-oriented patterns
(many based on Director)
But it seems intrinsic aspect-oriented patterns affect other
patterns in composition to a lesser degree resulting

Simpler composition
A pattern is removed by simply excluding it from the build

18 / 23



Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Evaluation: Design Pattern Composition

Quantitative Assessment

Improved composability reflects significantly in separation of
(crosscutting) concerns
Thus, the most relevant metrics for this study are those about
separation of concerns
However, coupling and cohesion are also important because
they express how modular the implementation is
We applied metrics used by Garcia et al.8 and Cacho et al.9

8A. Garcia et al. Modularizing design patterns with aspects: A quantitative study. In Proc. of 4th
International Conference on Aspect-Oriented Software Development, AOSD 2005, Chicago, Illinois,
USA. ACM, 2005.

9N. Cacho et al. Composing design patterns: A scalability study of aspect-oriented programming. In
Proc. of 5th International Conference on Aspect-Oriented Software Development, AOSD 2006, Bonn,
Germany. ACM, 2006.

19 / 23



Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Evaluation: Design Pattern Composition

Metrics

Separation of concerns:
Concern Diffusion over Components (CDC)
Concern Diffusion over Operations (CDO)
Concern Diffusion over Lines of Code (CDLOC)

Coupling:
Coupling Between Components (CBC)
Depth Inheritance Tree (DIT)

Cohesion:
Lack of Cohesion in Operations (LCOO)

Size:
Lines of Code (LOC)
Number of Attributes (NOA)
Weighted Operations per Components (WOC)

20 / 23



Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Evaluation: Design Pattern Composition

Quantitative Assessment: Results

In general, intrinsic aspect-oriented patterns had better results

21 / 23



Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Summary

Summary (1)

Intrinsic aspect-oriented design patterns can be used to
implement object-oriented design patterns
They achieve a better composability compared to both original
implementations of object-oriented design patterns and their
aspect-oriented reimplementations
Worker Object Creation can be successfully used instead of
Proxy
Cuckoo’s Egg can replace Singleton, Abstract Factory, and
Flyweight
Director is not a substitution
The validity of these substitutions has been confirmed in a
pattern composition study
Better composability of intrinsic aspect-oriented patterns has
been observed and measured

22 / 23



Replacing Object-Oriented Design Patterns with Intrinsic Aspect-Oriented Design Patterns

Summary

Summary (2)

However, the study was limited in size
Only four GoF patterns have been successfully substituted by
intrinsic aspect-oriented patterns
Further work:

Extend the study to other patterns
Employ other aspect-oriented languages
Explore how replacement of object-oriented patterns fits into
the context of refactoring

23 / 23


	Object-Oriented Design Patterns and Aspect-Oriented Programming
	Replacing Object-Oriented Patterns
	Evaluation: Design Pattern Composition
	Summary

