
Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Developing Applications with Aspect-Oriented
Change Realization

Valentino Vranić1 Michal Bebjak1

Radoslav Menkyna1 Peter Dolog2

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies
Slovak University of Technology, Bratislava, Slovakia

vranic@fiit.stuba.sk, mbebjak@gmail.com, radu@ynet.sk

Department of Computer Science
Aalborg University, Aalborg, Denmark

dolog@cs.aau.dk

CEE-SET 2008, October 13–15, 2008, Brno, Czech Republic
1 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Overview

1 The Only Constant. . .

2 Changes as Crosscutting Concerns

3 Catalog of Changes

4 Changing a Change

5 Evaluation

6 Summary

2 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Changes

Change is the only constant in software development (and
elsewhere, too)
Change realization is expensive and slow
Code modifications are usually tracked by a version control
tool
But the logic of a change as a whole vanishes without a
proper support in the programming language itself

3 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Motivating Example

Customization of web applications
A new version of the base application requires reapplication
of the customization changes at the client side

4 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Change Requests as Crosscutting Requirements

A change is initiated by a change request
Specified in domain notions
Tends to be focused, but usually consists of several
requirements

By abstracting and generalizing the essence of a change, a
change type can be identified
Such a change type is applicable to a range of applications
of the same domain

5 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Crosscutting Nature of Change Realizations

A change often affects many places in the code
E.g., modification of selected calls of the given method

Even if it affects a single place, we may want to keep it
separate

To be able to revert it and reapply it
Especially useful in the customization of web applications

Thus, changes can be seen as crosscutting concerns

6 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Example Scenario

Aspect-oriented change realization will be presented on an
example scenario
A merchant who runs his online music shop purchases a
general affiliate marketing software to advertise at third
party web sites (affiliates)
Simplified affiliate marketing scheme:

A customer visits an affiliate’s site which refers him to the
merchant’s site
When the customer buys something from the merchant,
the provision is given to the affiliate who referred the sale

Affiliate marketing software has to be adapted
(customized) to the merchant’s needs through a series of
changes
Assume the affiliate marketing software is written in Java
We use AspectJ to implement changes

7 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Aspect-Oriented Programming and AspectJ

Crosscutting concerns are implemented as aspects
Variety of aspect-oriented approaches and languages
AspectJ is the most widely used and influential
aspect-oriented language
The key issue is to identify and specify places where the
crosscutting code affects the rest of the code
Such places are called join points and they are specified by
pointcuts
Additional behavior to be performed before, after, or
instead of join points is specified in advices
Inter-type declarations enable introduction of new
members into existing types, as well as introduction of
compile warnings and errors

8 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Why Aspect-Oriented Programming?

Aspect-oriented programming enables to deal with change
explicitly and directly at programming language level
The logic of a change is modularized
Changes implemented by aspects are pluggable and
reapplicable to similar applications (e.g., in a product line)
Increased changeability of components has been reported if
they are implemented using

Aspect-oriented programming as such1

Aspect-oriented programming with the frame technology2

Enhanced reusability and evolvability of design patterns has
been achieved by using generic aspect-oriented languages
to implement them3

1J. Li, A. A. Kvale, and R. Conradi. A case study on improving changeability of COTS-based
system using aspect-oriented programming. Journal of Information Science and Engineering,
22(2):375–390, Mar. 2006.

2N. Loughran et al. Supporting product line evolution with framed aspects. In Workshop on
Aspects, Componentsand Patterns for Infrastructure Software (held with AOSD 2004,
International Conference on Aspect-Oriented Software Development), Lancaster, UK, Mar. 2004.

3T. Rho and G. Kniesel. Independent evolution of design patterns and application logic with
generic aspects—a case study. IAI-TR-2006-4, University of Bonn, Germany, Apr. 2006. 9 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Domain Specific Changes

Example: adding a backup SMTP server to ensure delivery
of the notifications to users

Each time the affiliate marketing software needs to send a
notification, it creates an instance of the SMTPServer
class which handles the connection to the SMTP server

A generalization:
An SMTP server is a kind of a resource that needs to be
backed up
In general, it’s a kind of Introducing Resource Backup
Abstract, but still expressed in a domain specific way—a
domain specific change type

10 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Domain Specific Change Implementation (1)

The crosscutting concern identified: maintaining a backup
resource that has to be activated if the original one fails
Can be implemented in a single aspect without modifying
the original code

11 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Domain Specific Changes

class NewSMTPServer extends SMTPServer {
. . .

}
public aspect BackupSMTPServer {

public pointcut SMTPServerConstructor(URL url, String user, String password):
call(SMTPServer.new(..)) && args (url, user, password);

SMTPServer around(URL url, String user, String password):
SMTPServerConstructor(url, user, password) {
return getSMTPServerBackup(proceed(url, user, password));

}
SMTPServer getSMTPServerBackup(SMTPServer obj) {

if (obj.isConnected()) {
return obj;

}
else {

return new SMTPServerBackup(obj.getUrl(), obj.getUser(),
obj.getPassword());

}
}

}
12 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Domain Specific Change Implementation (2)

If we abstract from SMTP servers and resources
altogether, it’s actually a class exchange
Class Exchange change type based on the Cuckoo’s Egg
aspect-oriented design pattern 4

public class AnotherClass extends MyClass {
. . .

}
public aspect MyClassSwapper {

public pointcut myConstructors(): call(MyClass.new());
Object around(): myConstructors() {

return new AnotherClass();
}

}

Class Exchange is a generally applicable change type

4R. Miles. AspectJ Cookbook. O’Reilly, 2004.
13 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Applying a Change Type

How to give a hint to developer to use a particular change
type?
We have to maintain a catalog of changes
Each domain specific change type is defined as a
specialization of one or more generally applicable changes

14 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Applying a Change Type

To support the process of change selection, the catalog of
changes is needed
It explicitly establishes generalization–specialization
relationships between change types
The following list sums up these relationships between
change types we have identified in the web application
domain (the domain specific change type is introduced
first)

15 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Catalog of Changes in Web Application Domain (1)

Integration Changes
One Way Integration: Performing Action After Event
Two Way Integration: Performing Action After Event

Grid Display Changes
Adding Column to Grid: Performing Action After Event
Removing Column from Grid: Method Substitution
Altering Column Presentation in Grid: Method
Substitution

16 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Catalog of Changes in Web Application Domain (2)

Input Form Changes
Adding Fields to Form: Enumeration Modification with
Additional Return Value Checking/Modification
Removing Fields from Form: Additional Return Value
Checking/Modification
Introducing Additional Constraint on Fields: Additional
Parameter Checking or Performing Action After Event

Introducing User Rights Management: Border Control with
Method Substitution
User Interface Restriction: Additional Return Value
Checking/Modifications
Introducing Resource Backup: Class Exchange

17 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Changes in Affiliate Marketing Scenario

Integrate with a newsletter: One Way Integration
Forum for affiliates: Two Way Integration
Add restricted administrator account: Border Control and
Method Substitution
Remove menu items in restricted administrator account:
Additional Return Value Checking/Modification
Add the genre field to the affiliate table: Adding Column
to Grid
Add the genre field to the generic affiliate sign-up form and
his profile form: Adding Fields to Form

18 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Implementing a change of a change

Sooner or later there will be a need for a change whose
realization will affect some of the already applied changes
There are two possibilities to deal with this situation:

A new change can be implemented separately using
aspect-oriented programming
The affected change source code could be modified directly

Either way, the changes remain separate from the rest of
the application

19 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Feasibility

The possibility to implement a change of a change using
aspect-oriented programming and without modifying the
original change is given by the aspect-oriented
programming language capabilities
E.g., advices in AspectJ

Unnamed, so can’t be referred to directly
adviceexecution() can be restricted by within() to a
given aspect
If an aspect contains several advices, they have to be
annotated and accessed by the @annotation() pointcut
This was impossible in AspectJ versions that existed before
Java was extended with annotations

20 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Aspect-Oriented Refactoring

By aspect-oriented change realization, crosscutting
concerns in the application are being separated
Improves modularity (which makes easier further changes)
This may be seen as a kind of aspect-oriented refactoring
E.g., the integration with a newsletter (a kind of One Way
Integration) is actually a separation of the integration
connection, a concern of its own
Even if these once separated concerns are further
maintained by direct source code modification, the they
remain separate from the rest of the application
Implementing a change of a change using aspect-oriented
programming and without modifying the original change is
interesting mainly if it leads to separation of another
crosscutting concern

21 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

YonBan

The approach succesfully applied to introduce changes into
YonBan, a student project management system developed
at Slovak University of Technology
YonBan is based on J2EE, Spring, Hibernate, and Acegi
frameworks with its architecture based on Inversion of
Control and MVC
The following changes have been implemented in YonBan:

Telephone number validator as Performing Action After
Event
Telephone number formatter as Additional Return Value
Checking/Modification
Project registration statistics as One Way Integration
Project registration constraint as Additional Parameter
Checking/Modification
Exception logging as Performing Action After Event
Name formatter as Method Substitution

No original code of the system had to be modified
22 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Change Interaction

We encountered one change interaction: between the
telephone number formatter and validator
These two changes are interrelated

They would probably be part of one change request
No surprise they affect the same method
No intervention was needed

23 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Tool Support

We managed to implement the changes easily even without
a dedicated tool
To cope with a large number of changes, such a tool may
become crucial
Even general aspect-oriented programming support tools
may help
AJDT for Eclipse

Shows whether a particular code is affected by advices, the
list of join points affected by each advice, and the order of
advice execution—important to track when multiple
changes affect the same code
Advices that do not affect any join point are reported in
compilation warnings—helps detect pointcuts invalidated
by direct modifications of the application base code

24 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

The Need for a Dedicated Tool

A change implementation can consist of several aspects,
classes, and interfaces (types)
The tool should keep track of all the parts of a change

Some types may be shared among changes
Should enable simple inclusion and exclusion of changes

Inclusion and exclusion of changes is related to change
dependencies
E.g., a change may require another change or two changes
may be mutually exclusive
But dependencies can be complex as feature dependencies
in feature modeling

25 / 27



Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Feature Modeling

Changes can be considered as features
Dependencies could be represented by feature diagrams
and additional constraints
Some dependencies between changes may exhibit only
recommending character (e.g., features that belong to the
same change request) — default dependency rules
This is related to the approach for change impact analysis
of aspectual requirements based on concern slicing5

Maintaining change dependencies with feature modeling is
similar to constraints and preferences in SIO software
configuration management system6

5S. O. Rashid, et al. Approach for Change Impact Analysis of Aspectual Requirements.
AOSD-Europe Deliverable D110, AOSD-Europe-ULANC-40, March 2008.
http://www.aosd-europe.net/deliverables/d110.pdf

6R. Conradi and B. Westfechtel. Version models for software configuration management.
ACM Computing Surveys, 30(2):232–282, June 1998.

26 / 27

http://www.aosd-europe.net/deliverables/d110.pdf


Developing
Applications
with Aspect-

Oriented
Change

Realization

V. Vranić
et al.

The Only
Constant. . .

Changes as
Crosscutting
Concerns

Catalog of
Changes

Changing a
Change

Evaluation

Summary

Summary

An approach to change realization using aspect-oriented
programming
Dealing with changes at two levels: domain specific and
generally applicable change types
Change types specific to web application domain along
with corresponding generally applicable changes
Consequences of having to implement a change of a change
Further work:

Apply feature modeling to deal with change interaction
Aspect-oriented change realization at model level
Tool support

27 / 27


	The Only Constant…
	Changes as Crosscutting Concerns
	Catalog of Changes
	Changing a Change
	Evaluation
	Summary

