
Evolution of Web Applications with Aspect-Oriented Design Patterns

Evolution of Web Applications with
Aspect-Oriented Design Patterns

ICWE 2007 — Como, Italy
July 19, 2007

Michal Bebjak1 Valentino Vranić1 Peter Dolog2

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technology

Slovak University of Technology, Ilkovičova 3, 84216 Bratislava 4, Slovakia
bebjak02@student.fiit.stuba.sk,vranic@fiit.stuba.sk

Department of Computer Science
Aalborg University

Fredrik Bajers Vej 7, building E
DK-9220 Aalborg EAST

dolog@cs.aau.dk

July 19, 2007
1 / 15

bebjak02@student.fiit.stuba.sk, vranic@fiit.stuba.sk
dolog@cs.aau.dk

Evolution of Web Applications with Aspect-Oriented Design Patterns

Overview

1 Changes as Crosscutting Concerns

2 Aspect-Oriented Change Realization Framework

3 Aspect-Oriented Design Patterns for Change Representation

4 Change Types in Web Applications

5 Conclusions and Further Work

2 / 15

Evolution of Web Applications with Aspect-Oriented Design Patterns
Changes as Crosscutting Concerns

Changes

Changes are inseparable part of software evolution
Change implementation: expensive and slow
A change often affects many places in the code

E.g., modification of selected calls of the given method
Even if it affects a single place, we may want to keep it
separate

To be able to revert it and reapply it
Especially useful in the customization of web applications

Thus, changes can be seen as crosscutting concerns

3 / 15

Evolution of Web Applications with Aspect-Oriented Design Patterns
Changes as Crosscutting Concerns

Aspect-Oriented Programming

Crosscutting concerns are implemented as aspects
Variety of aspect-oriented approaches and languages
AspectJ is the most widely used and influential aspect-oriented
language
The key issue is to identify and specify places where the
crosscutting code affects the rest of the code
Such places are called join points and they are specified by
pointcuts
Additional behavior to be performed before, after, or instead of
join points is specified in advices
Inter-type declarations enable introduction of new members
into existing types, as well as introduction of compile warnings
and errors

4 / 15

Evolution of Web Applications with Aspect-Oriented Design Patterns
Aspect-Oriented Change Realization Framework

Our Approach

Two levels of changes:
Application specific changes: high-level change specifications
General changes: change realizations

A change to be applied is selected by its specification
An example:
A backup SMTP server is needed ⇒Introducing a Resource
Backup ⇒Class Exchange

Application specific changes are implemented by adapting code
schemes of the corresponding general changes

5 / 15

Evolution of Web Applications with Aspect-Oriented Design Patterns
Aspect-Oriented Change Realization Framework

Catalogue of Changes

One Way Integration: Perform an Action After an Event
Two Way Integration: Perform an Action After an Event
Adding a Column to a Grid: Perform an Action After an Event
Removing a Column from a Grid: Method Substitution
Altering Column Presentation in a Grid: Method Substitution
Adding Fields to a Form: Enumeration Modification
Removing Fields from a Form: Enumeration Modification with
Additional Return Value Checking/Modification
Introducing an Additional Constraint on Fields: Additional
Parameter Checking
Introducing User Rights Management: Border Control with
Method Substitution
User Interface Adaptation: Additional Return Value
Checking/Modifications
Introducing a Resource Backup: Class Exchange

6 / 15

Evolution of Web Applications with Aspect-Oriented Design Patterns
Aspect-Oriented Change Realization Framework

Catalogue of Changes

One Way Integration: Perform an Action After an Event
Two Way Integration: Perform an Action After an Event
Adding a Column to a Grid: Perform an Action After an Event
Removing a Column from a Grid: Method Substitution
Altering Column Presentation in a Grid: Method Substitution
Adding Fields to a Form: Enumeration Modification
Removing Fields from a Form: Enumeration Modification with
Additional Return Value Checking/Modification
Introducing an Additional Constraint on Fields: Additional
Parameter Checking
Introducing User Rights Management: Border Control with
Method Substitution
User Interface Adaptation: Additional Return Value
Checking/Modifications
Introducing a Resource Backup: Class Exchange

7 / 15

Evolution of Web Applications with Aspect-Oriented Design Patterns
Aspect-Oriented Change Realization Framework

When a Change Gets Changed. . .

Technically, it is possible for an aspect in AspectJ to affect
another aspect
Subsequent changes can be implemented in separate aspects
Sometimes it is more desirable to either

transform aspect-oriented implementation of the former
changes into object-oriented one, or
implement a subsequent change by modifying the aspect code

8 / 15

Evolution of Web Applications with Aspect-Oriented Design Patterns
Aspect-Oriented Change Realization Framework

Other Aspect-Oriented Approaches

No need to switch to aspect-oriented language: many
frameworks support aspect-oriented programming
We studied the Seasar PHP framework
It is usable, though limited: supports only method calls as join
points
Seasar misses some more sophisticated primitive pointcuts: we
implemented cflow() and cflowbelow()

9 / 15

Evolution of Web Applications with Aspect-Oriented Design Patterns
Aspect-Oriented Design Patterns for Change Representation

General Change Types

Many useful design patterns already have been identified valid
for AspectJ and alike
A successful aspect-oriented change implementation requires a
structured base application
We identified several general change types expressed in
programming language terms:

Class Exchange
Method Substitution
Enumeration Modification
Additional Parameter Checking
Additional Return Value Checking/Modification
Perform an Action After an Event

Implementation of these changes is based on aspect-oriented
design patterns like Cuckoo’s Egg, Policy, etc.

10 / 15

Evolution of Web Applications with Aspect-Oriented Design Patterns
Aspect-Oriented Design Patterns for Change Representation

Class Exchange

Sometimes, a class has to be exchanged with another one
either in the whole application, or in a part of it
Based on the Cuckoo’s Egg design pattern1

public aspect ExchangeClass {
public pointcut exhangedClassConstructor(): call(ExchangedClass.new(..));

ExchangedClass around(): exhangedClassConstructor() {
return getExchangingObject(proceed());

}

ExchangedClass getExchangingObject(ExchangedClass obj) {
if (. . .) { return obj; }
else { return new ExchangingClass(); }

}
}

1The code scheme in the paper is incorrect. This is the correct version.
11 / 15

Evolution of Web Applications with Aspect-Oriented Design Patterns
Change Types in Web Applications

Introducing a Resource Backup

Suppose we’re adapting an affiliate marketing application
One of its features is sending notifications about new sales,
signed up affiliates, etc.
We would like to have a backup SMTP server for sending
notifications
This change can be implemented as a Class Exchange change
SMTPServer around(): exhangedClassConstructor() {

return getExchangeObject(proceed());
}

SMTPServer getExchangeObject(SMTPServer server) {
if (server.isConnected()) {

return server;
} else {

return new SMTPServer(/∗ alternative SMTP server params ∗/);
}

}
12 / 15

Evolution of Web Applications with Aspect-Oriented Design Patterns
Change Types in Web Applications

Web Application Specific Changes

High-level change descriptions
We identified the following web application specific change
types:

integration changes
grid display changes
input form changes
user rights management changes
user interface adaptation
resource backup

13 / 15

Evolution of Web Applications with Aspect-Oriented Design Patterns
Conclusions and Further Work

Conclusions

We proposed a new approach to web application evolution
Two levels: specification and realization
Changes are implemented by aspect-oriented design patterns
and program schemes
We identified several change types in web applications
We also proposed principles of an aspect-oriented change
realization framework

14 / 15

Evolution of Web Applications with Aspect-Oriented Design Patterns
Conclusions and Further Work

Further Work

Search for further change types and their realizations
Explore change interactions and evaluate the approach
practically
Further work on the catalogue of changes
Deal with changes at the modeling level: integrate
aspect-oriented modeling approaches with web modeling
approaches

15 / 15

	Changes as Crosscutting Concerns
	Aspect-Oriented Change Realization Framework
	Aspect-Oriented Design Patterns for Change Representation
	Change Types in Web Applications
	Conclusions and Further Work

