Alfecting
Applications in
Android Using
Aspects

e e

sTU BUSVAT HMIVERRITY OF
TRCHIGLASY 14 REATISLANS
FHT FASULTY 87 (I ZEUATIC
SHIL IHE IR TN L R L

= ADF i spect)
5 ¢
sl A e andvanond asgued AljpsE LN E— A W e o e, g T
il s | I o - = o
iy DR gt B | e e T “era——
e L) e ! o e
i b ekl ew ek} DL D D = — B s s
Ll i) ' i = e
i i sries [—— Sttt et = =
i RS P
[T P e : 0
1
1 T B T
S U TP ——
et akt
Ml st ling, Flmbiigs
e T [P ————— e
war e v s cua bl ekl st
e P - Tatirins e b e e ey I s et o b b
Bty ety T o gt s, Vst Wi b i, - saghi o gl i B T ——
- Phewscimpues ek tlis dvading sl el ek B B e ek
i e g
-t e - o Vi i) e bt e bt g ek o
" il et o e s ks A0 ¢ b o el g
pew i B e e e
. crimaliish Thers i e gt The -
T R s TR s

LS R r—
- bt ot skl

What is aspect-
oriented
programming
Aspects in Android:
Usability and
Performance
Valentino Vranic

Institute of Informatics and Software Engineering,

LA L ST U SLOVAK UNIVERSITY OF
e o 0 @ TECHNOLOGY IN BRATISLAVA
e o 0 0 FIIT FACULTY OF INFORMATICS

AND INFORMATION TECHNOLOGIES

vranic@stuba.sk
http:/fiit.sk/~vranic/

Affecting
Applications in
Android Using

Aspects

Ivan Martos and Valentino Vrani¢

Usability of
Aspect] from the
Performance
Perspective

Erik Suta, Ivan Marto$, and
Valentino Vrani¢

Aspecfs in Android:
Usability and
Performance

What is aspect-
oriented
programming

Affecting
Applications in
Android Using

Aspects

Ivan Martos and Valentino Vranic

Usability of
Aspect] from the
Performance
Perspective

Erik Suta, Ivan Martos, and
Valentino Vranic

What is aspect-
oriented
programming

public class Point {
private int x;
private int y;

public void setX(int x) { this.x = x; }
public void setY(int y) { this.y = y; }
public int getX() { return x; }
public int getY() { returny; }

A more advanced aspect

public aspect SomeAspect {
void around(): call(void My*.make*()) {
invoke.Queue.add(mew Runnable () {
public void run() {
proceed();
}

}); // calls captured and sent to some queue

- The Worker Object Creation aspect-oriented design pattern

AOP 1n Aspect]

- Not only calls, but executions, access to attributes, or even control
flows can be captured

- Aspects can introduce new attributes and methods

- Aspects can be used to modularize changes, which is very useful in
customization

- All this is so-called asymmetric aspect-oriented programming (AOP)
- There's much more to AOP...
- Separation of crosscutting concerns

- Advanced modularization

roid:

Affecting
Applications in
Android Using

Aspects

Ivan Martos and Valentino Vranic

How aspect-oriented programming can be utilized
in Android?

- General, application dependent application of AOP holds for
mobile applications in Android, too

- An adapted build cycle is necessary in order to utilize Aspect)
under Android

- Calls to Android API can be captured and affected by aspects

- Aspects can’t modily permissions that application has declared
In its manifest file

Fake the GPS sensor is turned on

boolean around(String provider):
call(boolean android.location.LocationManager.
isProviderEnabled(..)) && args(provider) {

//Additional logic...
return true;

Altering the GPS sensor output

- GPS consumes lots of energy
- The GSM provider's location service can be used instead

- This can be managed with an aspect that modifies location update requests

void around(String provider, long timeChange, float distChange,
LocationListener listener):
call(void android.location.LocationManager. requestLocationUpdates(
String, long, float, android.location.LocationListener))
&& args(provider, timeChange, distChange, listener) {

provider = LocationManager. NETWORK PROVIDER;
proceed(provider, timeChange, distChange, listener);

What else can be done with aspects in
Android?

- Add notifications to application at any place
- Affect the Context class

- Monitor customs and routines of users (e.g., in order to increase
the battery life)

- By using aspects it is possible to add notifications to application at
any place

- Alter, affect, or even disable sensors

Even more to be done with aspects in
Android

- Provide added functionality
- Use cases can be preserved in source code by aspects

- Disable advertisement by affecting the com.google.ads
package with appropriate aspects

- Note: to disable bypassing by other applications, affect
system calls, not application calls

Usability of
Aspecl] from the
Performance
Perspective

Erik Suta, Ivan Martos, and
Valentino Vrani¢

Our performance measurement framework (1)

- https://github.com/eriksuta/Aspect]-Performance-
Measurement-Framework

- Ackermann function calculation4 (deep recursion)

- Fibonacci sequence calculation (branching recursion)
- Large matrix computation (matrix operations)

- Nested loop execution (loop handling)

- Random generation of double numbers (random
generation)

- Prime numbers calculation (arithmetic operations)

- Vast string concatenation (working with string values)
- Read of a long text file (working with 1/0)

- Quicksort algorithm (sorting)

- Object instantiation (memory allocation)

Our performance measurement {framework (2)

- Targeting the overhead coming from the very
invocation of aspects or, more precisely, advices (before,
after, and around)

- Coarse/fine grained aspect application
- Tests have been performed repeatedly big number of
times to decrease the imprecison of the

System.nanoTime() method

- Desktop and mobile setting

Desktop setting: the difference between fine-grained and
coarse-grained aspect application not substantial

Inst
Sort

M Fine
RF
SC W Coarse
. PN
L]
“~ RG M No
NL ——

Mat
Fib
Ack

10000

Mobile setting

- Android mobile device with the ART virtual
machine with a clean Android installation (5.0.1)

- Slightly altered original test suite for
performance reasons

Mobile setting (Android mobile device with Aspect] version 1.7.3):
coarse-grained aspect application performs better

Inst BFine
Sort |Around)
sC B Fne |After)
PN
W
. RG ~ Fne
NL |Before)
Mat -
Fib prm—s
Ack ENc Aspects
0 2000 4000 6000 8000

time [ns]

Findings

- Rich use of aspects causes more significant performance
overhead in mobile devices compared to desktop devices

- It pays off to apply aspects rather to a small number of
high time complexity methods than to a large number of
low time complexity methods

- The before advice generates less performance overhead
than the after advice (on both mobile and desktop
devices); the around advice generates the higgest
performance overhead

What is aspect-
oriented
programming
Aspects in Android:
Usability and
Performance
Valentino Vranic

Institute of Informatics and Software Engineering,

LA L ST U SLOVAK UNIVERSITY OF
e o 0 @ TECHNOLOGY IN BRATISLAVA
e o 0 0 FIIT FACULTY OF INFORMATICS

AND INFORMATION TECHNOLOGIES

vranic@stuba.sk
http:/fiit.sk/~vranic/

Affecting
Applications in
Android Using

Aspects

Ivan Martos and Valentino Vrani¢

Usability of
Aspect] from the
Performance
Perspective

Erik Suta, Ivan Marto$, and
Valentino Vrani¢

