
Sustaining Composability of Aspect-Oriented Design Patterns in Their Symmetric Implementation

Sustaining Composability of Aspect-Oriented Design
Patterns in Their Symmetric Implementation

Jaroslav Bálik Valentino Vranić

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies

Slovak University of Technology in Bratislava

vranic@fiit.stuba.sk

ESCOT 2011 – July 25, 2011, Lancaster, UK

1 / 22

vranic@fiit.stuba.sk

Sustaining Composability of Aspect-Oriented Design Patterns in Their Symmetric Implementation

Overview

1 Symmetry of Aspect-Oriented Approaches

2 Aspect-Oriented Design Patterns

3 Pattern Composition

2 / 22

Sustaining Composability of Aspect-Oriented Design Patterns in Their Symmetric Implementation
Symmetry of Aspect-Oriented Approaches

Asymmetric and Symmetric AOP

Asymmetric AOP: aspects (on one side) as something that
affects the base code (on the other side)

Aspects are said to be woven into the base code
AspectJ and like—PARC1 AOP
Mainstream approach in AOP

Symmetric AOP: aspects as partial views of classes
Functional classes are constructed by the compositions of
selected views, i.e. aspects
Hyper/J—IBM Watson Research Center
No industry-strength languages

1Palo Alto Research Center
3 / 22

Sustaining Composability of Aspect-Oriented Design Patterns in Their Symmetric Implementation
Symmetry of Aspect-Oriented Approaches

A More Comprehensive View of Symmetry

Symmetry here is percieved mostly as element symmetry
A more comprehensive view of symmetry includes join point
symmetry and relationship symmetry2

2W. Harrison, H. Ossher, P. Tarr. Assymetrically vs. symmetrically organized paradigms for software
composition. Research Report RC22685, IBM Watson Research Center, 2002.

4 / 22

Sustaining Composability of Aspect-Oriented Design Patterns in Their Symmetric Implementation
Symmetry of Aspect-Oriented Approaches

Significance of Symmetric Approaches

Asymmetric approaches may lead to avoidance of
aspect-orientation for the base design
Symmetric approaches seem to be important in
aspect-oriented analysis and design
Theme—an academic approach that supports symmetry in
analysis and design

5 / 22

Sustaining Composability of Aspect-Oriented Design Patterns in Their Symmetric Implementation
Symmetry of Aspect-Oriented Approaches

Use cases—Intrinsically Aspect-Oriented

Symmetrically

 «extends»

Authenticate

Enroll into Study Year

Extension Point
Acknowledge Enrollment

Student

End Study

Extension Point
Acknowledge Study End

 «extends»

Asymmetrically

Enroll into Study Year

EnrollmentManager

enrollStudent()

manager

Student

enroll()
setYear()

student

End Study

manager student

Student

endStudy()

EndStudyManager

endEnrollment()

Enroll into Study Year End Study

6 / 22

Sustaining Composability of Aspect-Oriented Design Patterns in Their Symmetric Implementation
Aspect-Oriented Design Patterns

Aspect-Oriented Design Patterns

Aspect-oriented reimplementations of object-oriented design
patterns are sometimes denoted as aspect-oriented design
patterns
But there are intrinsic aspect-oriented patterns
Aspect-oriented patterns are virtually defined by their AspectJ
implementations—an asymmetric approach
Are they intrinsically asymmetric?

7 / 22

Sustaining Composability of Aspect-Oriented Design Patterns in Their Symmetric Implementation
Aspect-Oriented Design Patterns

Symmetric Pattern Form

Symmetric aspect-oriented approaches are important
A general aspect-oriented pattern should be possible to
implement both asymmetrically and symmetrically
Aspect-oriented patterns should be examined for the existence
of their symmetric form
Individual symmetric implementations of patterns are only the
first step
Their ability to be composed with each other should sustain
among their symmetric implementations
We did this for three patterns:

Director
Border Control
Cuckoo’s Egg

8 / 22

Sustaining Composability of Aspect-Oriented Design Patterns in Their Symmetric Implementation
Aspect-Oriented Design Patterns

Coplien’s Form

Coplien’s form was used to express patterns in a general form,
departed from (asymmetric) implementation details
E.g., in AspectJ terms, the Cuckoo’s Egg pattern captures a
constructor call by an around advice and creates and provides
an object of another type

9 / 22

Sustaining Composability of Aspect-Oriented Design Patterns in Their Symmetric Implementation
Aspect-Oriented Design Patterns

Cuckoo’s Egg in Coplien’s Form

Problem: Instead of an object of the original type, under certain
conditions, an object of some other type is needed.

Context: The original type may be used in various contexts. The need
for the object of another type can be determined before the
instantiation takes place.

Forces: An object of some other type is needed, but the type that is
going to be instantiated may not be altered.

Solution: Make the other type subtype of the original type and provide
its instance instead of the original type instance at the moment
of instantiation if the conditions for this are fulfilled.

Resulting Context: The original type remains unchanged, while it appears to
give instances of the other type under certain conditions. There
may be several such types chosen for instantiation according to
the conditions.

Rationale: The other type has to be a subtype of the original type.

10 / 22

Sustaining Composability of Aspect-Oriented Design Patterns in Their Symmetric Implementation
Aspect-Oriented Design Patterns

Hyper/J Pattern Implementations

Hyperspace: a set of classes to be operated upon
Hyperslices (concerns): views containing partial classes
Hypermodules: compositions of views into complete classes

11 / 22

Sustaining Composability of Aspect-Oriented Design Patterns in Their Symmetric Implementation
Aspect-Oriented Design Patterns

Cuckoo’s Egg in Hyper/J (1)
public class Nest {

Egg e;
public Nest() {

e = new Egg();
}
public void report() {

e.exec();
}

}

public class Egg {
public void report() {

System.out.println("original egg");
}

}

public class CuckoosEgg {
public void report() {

System.out.println("cuckoo’s egg");
}

} 12 / 22

Sustaining Composability of Aspect-Oriented Design Patterns in Their Symmetric Implementation
Aspect-Oriented Design Patterns

Cuckoo’s Egg in Hyper/J (2)

-hyperspace
hyperspace cuckoosegg
composable class Egg;
composable class CuckoosEgg;
composable class Nest;

-concerns
class Egg: Feature.egg
class CuckoosEgg: Feature.cuckoo
class Nest: Feature.nest

-hypermodules
hypermodule CuckooDemo

hyperslices: Feature.egg, Feature.cuckoo, Feature.nest;
relationships: overrideByName;
override class Feature.egg.Egg

with class Feature.cuckoo.CuckoosEgg;
end hypermodule;

13 / 22

Sustaining Composability of Aspect-Oriented Design Patterns in Their Symmetric Implementation
Aspect-Oriented Design Patterns

Cuckoo’s Egg in AspectJ

public aspect PutCuckoosEgg {
declare parents: CuckoosEgg extends Egg;
Egg around(): : call(Egg.new(..)) {

return new CuckoosEgg();
}

}

14 / 22

Sustaining Composability of Aspect-Oriented Design Patterns in Their Symmetric Implementation
Pattern Composition

A Study (1)

A small study that involved a composition of three
aspect-oriented patterns has been developed
The state of three horizontal RGB color sliders is observed by
a display
The blue slider is replaced by a vertical slider

15 / 22

Sustaining Composability of Aspect-Oriented Design Patterns in Their Symmetric Implementation
Pattern Composition

A Study (2)

The pattern composition has been implemented in AspectJ
and in Hyper/J

RedFrame

GreenFrame

BlueFrame

SlPanel

AnotherPanel

Display

Cuckoo's Egg

Director

Border Control

Cuckoo's Egg Border ControlDirector

16 / 22

Sustaining Composability of Aspect-Oriented Design Patterns in Their Symmetric Implementation
Pattern Composition

Asymmetric Pattern Composition in Hyper/J

Border Control defines a partitioning according to color
packages
Cuckoo’s Egg swaps an SlPanel instance by an AnotherSlPanel
instance in the BlueFrame class using the pointcut defined by
Border Control
Director enforces the Observer pattern onto the Display class
and panel classes affecting AnotherPanel, too

17 / 22

Sustaining Composability of Aspect-Oriented Design Patterns in Their Symmetric Implementation
Pattern Composition

Symmetric Pattern Composition in Hyper/J (1)

Border Control’s partitioning is realized by concern mappings

package red: Feature.red
package green: Feature.green
...

Cuckoo’s Egg swaps the Feature.blue hyperslice defined by
Border Control using the override statement

override hyperslice Feature.blue with hyperslice Feature.panelswap;

18 / 22

Sustaining Composability of Aspect-Oriented Design Patterns in Their Symmetric Implementation
Pattern Composition

Symmetric Pattern Composition in Hyper/J (2)

Director defines its additional roles in separate hyperslices
package observer: Feature.observer
package dummy: Feature.dummy

The observer hyperslice contains the subject and observer
interface:
public interface Subject {

public void attach(Observer o);
public void detach(Observer o);
public void notify();

}
public interface Observer {

void update(Subject subject);
}

The dummy hyperslice redeclares classes so that
BlueSlPanel3 and SlPanel implement the Subject interface
Display implements the Observer interface

3playing the role of AnotherPanel 19 / 22

Sustaining Composability of Aspect-Oriented Design Patterns in Their Symmetric Implementation
Pattern Composition

Hyper/J Limitations

A class can’t belong to different hyperslices
The class that was going to be replaced by Cuckoo’s Egg had
to be physically copied into the corresponding hyperslice

No fully functional explicit class composition (known issue)
Explicit override actually works, but only in simple cases; the
problem arises when combined with mergeByName
SlPanel in the blue hyperslice (its copy) had to be renamed (to
BlueSlPanel) so it would not have been replaced by
mergeByName compositions

These limitations are rather technical, not intrinsic to the
symmetric approach as such

20 / 22

Sustaining Composability of Aspect-Oriented Design Patterns in Their Symmetric Implementation
Pattern Composition

Patterns That Couldn’t Be Implemented in Hyper/J

Both Exception Introduction and Worker Object Creation
capture dynamic join points which are not supported by
Hyper/J
Policy captures join points that occur during compile time,
while Hyper/J composes previously compiled classes
Wormhole is based on capturing a control flow, which can’t be
done in Hyper/J

21 / 22

Sustaining Composability of Aspect-Oriented Design Patterns in Their Symmetric Implementation
Summary

Summary

Symmetric aspect-oriented approaches are important
Aspect-oriented design patterns should be examined for the
existence of their symmetric form
Validity of the symmetric pattern forms can be checked
empirically by their sustaining ability to be composed

22 / 22

	Symmetry of Aspect-Oriented Approaches
	Aspect-Oriented Design Patterns
	Pattern Composition

