Assessing the DCI Approach to Preserving Use
Cases 1in Code: Qi4J and Beyond

Jozef Zatko and Valentino Vranié
Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava
Ilkovi¢ova 2, Bratislava, Slovakia
zatko7071 @gmail.com, vranic @stuba.sk

Abstract—DCI (Data, Context and Interaction) comes from
role-based programming and separates the system state from its
behavior making it possible to preserve use cases in code to the
great extent. In its Java implementation, DCI relies on the Qi4J
(renamed to Apache Zest at the time of finalizing this paper)
framework for role injection. This paper provides an assessment
of DCI via its Qi4J implementation and beyond based on an
independent study of a small car dealer system development.
Two most important conceptual findings are that roles can reduce
inheritance and decrease maintainability and that generic roles
can be played by objects of inappropriate classes. The findings
specific to the Qi4] implementation include loss of the direct
domain model access from the generic context roles, entities
defining their casting rules, use of interfaces instead of classes
as templates for objects, no access management of the data class
attributes and methods, and no direct support of polymorphism.

Keywords—DCI, use case, role, Java, Qid], Apache Zest

I. INTRODUCTION

DCI (Data, Context and Interaction) is a relatively new ap-
proach to software development [1], [2], yet it is based on long
time known role based programming. At the implementation
level, DCI captures and embodies the programmer’s intent in
the form of the interaction of objects that take their part in this
interaction through the corresponding roles subsequently de-
parting from them. In effect, this makes use cases significantly
more visible in code, as they are expressed in a procedural
fashion in terms of the roles that bear expressive names.

The implementation setting that assumes objects changing
their roles sounds as if dynamic programming languages are
the condition sine qua non to comply to DCI. However, the use
of DCI has been demonstrated in several static programming
languages including Java [2]. In its Java implementation, DCI
relies on the Qi4J framework (renamed to Apache Zest at the
time of finalizing this paper) for role injection. This paper
provides an assessment of DCI via its Qi4J implementation
and beyond based on an independent study of a small car
dealer system development.

Section II explains the fundamentals of DCI. Section III
provides a fresh look at implementing DCI in Qi4J. Section IV
reports the conceptual assessment findings of this imple-
mentation. Section V reports the implementation assessment
findings. Section VI discusses the related work. Section VII
concludes the paper.

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

II. DCI

In DCI, each use case is implemented by a single, so-
called context class. The attributes of this class are roles.
The use case behavior is executed by calling the methods
of use case roles, which represents interaction. Roles are
generic [3], implemented separately, and they are independent
of the domain objects. The only purpose of the domain objects,
the data part, is to represent the system state.

However, a DCI role has to reference domain data object
that plays it in order to access to the attributes of the domain
data object. The biggest challenge in DCI is to implement this
connection without creating a direct dependency between the
role and the domain object that plays it.

A. Data

The data part of the DCI architecture is represented by
the classes of the domain model. The only allowed methods
are attribute accesors (i.e., setters and getters) or methods that
do not belong to any particular use case. Data represents the
stable part of the system.

B. Context

Each context class represents one use case or habit (a
habit is a kind of a rudimentary use case: a sequence of
steps without direct business value [2]). The context should
be close to the use case specification as much as possible
in order to reduce the gap between the software specification
and its implementation. The structure of each context class
consists of the use case attributes including references to roles,
initialization method (to set up use case attributes), execution
method (the trigger method that represents the main flow of
the use case), and methods representing alternative flows.

The same role can be played by different objects. The
context usually starts with the same method of the same role,
but it can follow different paths according to the state of the
domain objects playing individual roles [2].

C. Interaction

The interaction part of the DCI is about roles and their
interaction, hence the name. The roles come from the user’s
mental model. DCI recognizes two types of roles: methodful
and methodless roles. The methodful roles encapsulate the

vranic
IEEE (C) 2015

system behavior maintaining the real knowledge of what-the-
system-does. They reference the data objects (domain objects)
and work with their attributes.

The purpose of the methodless roles is to define which roles
can by played by domain objects. Their implementation differs
according to the programming language. For example, they can
be implemented using Java or C#’s interfaces or C++’s abstract
base classes [2].

A methodfull role is stateless: its state is defined by the
object that plays it. The most challenging task in the DCI
implementation is to make an object play a role. For this,
the role behavior needs to be injected into the data object.
However, no dependency between the role and the data class
may be created.

D. Execution Model

The DCI execution model consists roughly of four steps
(the order of steps 2 and 3 is not defined):

1) The execution starts by instantiating one of the con-
text classes (based upon the use case activated by the
user)

2) The context object finds, creates, or retrieves objects
from the data part that play the roles of the context

3) The context injects the neccessary role behavior into
domain objects making them play the corresponding
roles

4) The context invokes the role methods (the interaction
starts)

III. DCIIN Qi4])

Qi4] (newly called Appache Zest) is a framework for
composite-oriented programming [4]. It’s building blocks are
composites that in turn consist of simple elements called
fragments. Fragments are reusable building blocks of the
Qi4j framework that bear the system behavior and state of
composites (in mixins), validate and constrain their usage
(in constraints), and handle cross-cutting concerns (in con-
cerns) [5].

The study presented in this paper is based on Qi4J version
1.3.

A. Data Implementation

To be able to create the composite of the data object and
role object in Qi4J (required for the execution of contexts), we
are forced to use interfaces instead of classes. Java classes do
not support multiple inheritance, but interfaces do. DCI defines
that a role can be theoretically played by objects of multiple
classes. To be able to keep this idea in source code, interfaces
are the only option.

Up to Java 8, Java interfaces supported only method signa-
tures in their bodies. Now they support method implementation
(so-called default methods), but still only static attributes.
For DCI, it is crucial to find the way to include the data
attributes. A solution to this problem is provided by Qi4J in
the org.qi4j.api.property.Property interface. Properties behave
like method signatures. They are not inherited and can be used
in the interface body. They provide set/get methods for a full

access to the stored data. Properties are generic: they can store
any data type. The only limitation is that we cannot set access
modifiers for them: all interface elements are public in Java.
Listing 1 demonstrates how properties are used to model the
car data in our car dealer system. It also includes a reference
to another data interface (ContractData).

public interface CarData {
@Optional Property <ContractData> contract();
@Optional Property <String> manufacturerName();
@Optional Property <String> modelName();
@Optional Property <String> color();
@Optional Property<Boolean> isNew();
@Optional Property <Double> price();
@Optional Property <Integer> year();

.

Listing 1. The use of Qi4J properties in a data interface.

The @Optional annotation at properties tells Qi4J not to
require their initialization in the process of entity creation
(explained in Section III-D).

The purpose of Java interfaces is just to declare the
implemented methods. The actual implementation is in the
classes that implement these interfaces. The best solution is
to implement these interfaces in a nested abstract class, i.e., in
a mixin. This solution is illustrated in Listing 2.

public interface CarData {

public String getName();
abstract class Mixin implements CarData {
/* Returns appended car name (manufacturer + model) */
public String getName() {
StringBuffer sb = new StringBuffer(””);
sb.append(this.manufacturerName().get());
sb.append(” ”);
sb.append(this.modelName().get());
return sb.toString().trim();
}
}
}

Listing 2. The use of a nested mixin class to define method in the Qi4J data
interface.

The @Mixins annotation tells Qi4J that the interface in-
cludes a mixin and will be a part of a composition (of the
data object and its role). Listing 3 shows the usage of the
@Mixins annotation.

@Mixins(CarData.Mixin.class)
public interface CarData {

.

Listing 3. The usage of the @Mixins annotation in the Qi4J data interface.

B. Context Implementation

The context structure can be fully captured in Qi4J. The
only limitation is the use of interfaces. A context interface de-
clares public context methods. Usually, two public methods—
one to initialize and one to execute the context—are sufficient.
These methods have to be implemented in a class. For this, a
nested mixin class is used. Listing 4 shows the basic structure
of a context interface in Qi4J.

@Mixins(InsureContext.Mixin.class)

public interface InsureContext extends TransientComposite {
public void initContext(...);
public void executeContext();
abstract class Mixin implements InsureContext {

public void initContext(...) { }
public void executeContext() { }
}
}

Listing 4. The basic structure of the context in the Qi4J.

The purpose of the initialization method is to set up the
context roles. Each context works with roles and their methods,
and not directly with the domain objects. Qi4J composites are
used to bind the objects to roles (explained in Section III-D).
It is important that the injection of the role behavior into the
data object is not performed in a context class: Qi4J does that
job. The required attributes of the initialization method are
methodfull roles. If they are set up as context object attributes,
their methods can be called to execute the context via the
context execute method. The context execution method covers
the steps of the use case. Listing 5 presents examples of the
implementation of context methods.

@Mixins(InsurerRole.Mixin.class)
public interface InsurerRole extends TransientComposite {
/* Role methods -- behavior */
public void preparelnsuranceContract(InsuranceContractRole insurance);
public void confirmInsuranceContract(InsuranceContractRole insurance);
abstract class Mixin implements InsurerRole {
public void preparelnsuranceContract(InsuranceContractRole insurance) {

public void confirmInsuranceContract(InsuranceContractRole insurance) {

}
}

@Mixins(InsureContext.Mixin.class)
public interface InsureContext extends TransientComposite {
/* The context methods being used */
public void initContext(InsuranceContractRole insurance, InsurerRole insurer,
InsurableRole insurable);
public void executeContext();
abstract class Mixin implements InsureContext {
/* The roles being used */
InsuranceContractRole insurance;
InsurerRole insurer;
InsurableRole insurable;
/* Context initialization */
public void initContext(InsuranceContractRole insurance, InsurerRole insurer,
InsurableRole insurable) {
this.insurance = insurance;
this.insurer = insurer;
this.insurable = insurable;

/* Context execution */

public void executeContext() {
/* This is the way how to keep the use case algorithm

readable */

this.insurer.prepareInsuranceContract(insurance);
this.insurance.setInsurer(insurer);
this.insurable.insure(insurance);
this.insurer.confirmInsuranceContract(insurance);

Listing 6. The basic structure of a role.

The implementation of the role methods requires to obtain
the reference to the object playing the current role. Without
the knowledge contained in the data objects, the role algorithm
cannot work. A reference to the data object playing the current
role is provided by the @This annotation. We annotate the
object of the new nested interface defined in the role body.
This interface has its own properties. Qi4J maps each property
of the data object to the property of the interface annotated
with @This. This is done in runtime and it corresponds to
the underlying DCI idea. The runtime role to objects binding
guarantees that each change in the role property will cause
changes in the object playing the current role. Listing 7
presents the structure of a role interface in Qi4;j.

}
}
}
Listing 5. Context methods.
Each implemented context in the example extends

the TransientComposite interface. The extension of the
TransientComposite interface allows for the role and data
object binding. Note that the context is generic. It only depends
on roles, and these can be played by objects of different
classes.

C. Role Implementation

The real challenge starts with the implementation of roles.
To retain the underlying DCI idea in code, it is necessary to
find the way how to inject the role behavior into data objects
without creating a dependency. As a role has to be playable by
objects of different classes, interfaces have to be used again.
Each role interface extends the TransientComposite interface
because the role is actually a composite. The role interface
includes signatures of the role methods. These methods are
implementated in a nested mixin class. Listing 6 shows an
example of this.

@Mixins(InsurerRole.Mixin.class)
public interface InsurerRole extends TransientComposite {
/* Role methods -- behavior */
public void preparelnsuranceContract(InsuranceContractRole insurance);
public void confirmInsuranceContract(InsuranceContractRole insurance);
/* An interface represents the data of the objects
playing the current role */
interface InsurerData {
@Optional Property <String> firstName();
@Optional Property <String> familyName();
@Optional Property <List<InsuranceContractRole>> contracts();

abstract class Mixin implements InsurerRole {

@This

InsurerData data;

public void preparelnsuranceContract(InsuranceContractRole insurance) {
insurance.setApproveFlag(Boolean.FALSE);
insurance.setCompleteFlag(Boolean.FALSE);
insurance.setInsurer(data.firstName().get(), data.firstName().get());
insurance.setCreateDate(new Date());
data.contracts().get().add(insurance);

public void confirmInsuranceContract(InsuranceContractRole insurance) {
insurance.setCompleteFlag(Boolean. TRUE);
insurance.setSignDate(new Date());

}
}

Listing 7. A complete structure of a role.

D. Qi4J Entities

An entity is the basic element of a Qi4J application.
Entities represent the persistent data of the system. We can
implement them as composites, the building blocks of the Qi4J
application. Qi4J supports the whole lifecycle of the entity via
the UnitOfWork library.

Each Qi4]J entity is implemented as an interface that
extends the org.qi4j.api.entity. EntityComposite interface. The
purpose of an entity is to guarantee the composability of

the data objects and roles. An entity behaves like the cor-
responding data object and like the role it plays as well.
This is achieved by inheritance: each entity has to extend the
corresponding data interface and each interface of the roles it
is going to play. Listing 8 shows this.

public interface SellerEntity extends EntityComposite,
//Data
SellerData,
//Roles
ApproverRole,
ContractorRole,
InsurerRole

i}
}

A Qi4J application starts by instanti-
ating SingletonAssembler, UnitOfWork, and
TransientBuilderFactory. The management of the instances
of context classes—called transients—is provided by
TransientBuilderFactory. Listing 11 demonstrates this
instantiation.

SingletonAssembler assembler = new EntityContextsRolesAssembler();
UnitOfWork uow = assembler.unitOfWorkFactory().new UnitOfWork();
TransientBuilderFactory tbf = assembler.module().transientBuilderFactory();

Listing 8. An entity.

Because of inheritance, each entity object behaves like a
data object. Listing 9 shows how to work with an entity.

Listing 11. Instantiation of SignletonAssembler, UnitOfWork, and
TransientBuilderFactory.

Listing 12 shows a triggering of the context.

UnitOfWork uow = assembler.unitOfWorkFactory().newUnitOfWork();

SellerData seller;

seller = uow.newEntity(SellerEntity.class, “seller”);
seller.title().set(”");

seller.firstName().set(” Chris”);
seller.familyName().set(”Froome”);
seller.contact().set(” froome@sky . com”);

SellerEntity seller = uow.get(SellerEntity.class, ”seller”);

CarEntity car = uow.get(CarEntity.class, ”car”);

CarlnsuranceEntity insurance = uow.get(CarInsuranceEntity.class, “contract”);
SellerEntity seller = uow.get(SellerEntity.class, “seller”);

InsureContext context = tbf.newTransient(InsureContext.class);
context.initContext(insurance, seller, car);

context.executeContext();

Listing 9. Working with an entity.

E. Qi4J Specifics to Support the DCI Approach and Context
Execution

Qi4] supports a multilayered architecture with each layer
consisting of several modules. Each module has its own set
of entities. The interfaces specific to Qi4J (such as those for
entities, composites, or services) need to be registered in the
assembler object. The presented model example consist only
of one module. The SingletonAssembler class offers methods
to perform that registration. Listing 10 demonstrates this.

public class EntityContextsRolesAssembler extends SingletonAssembler {
public void assemble(ModuleAssembly module) throws AssemblyException {
// All the Qi4J entities being used
module.addEntities(

CarEntity.class,
CarEquipmentEntity.class,
ContractEntity.class,
EmployeeEntity.class,
InsuranceEntity.class,
SaleEntity.class,

// All used DCI contexts and roles
module.addTransients(

InsureContext.class,

InsuranceContractRole.class,
InsurableRole.class,
InsurerRole.class,

);
// Recommended services
module.addServices(MemoryEntityStoreService.class,
UuidIdentityGeneratorService.class);
}

}

Listing 10. Implementation of SignletonAssembler.

Listing 12. InsureContext triggering.

IV. CONCEPTUAL ASSESSMENT

The DCI approach and its implementation bring many
changes into object-oriented programming that affect the de-
velopment process in different ways. Here we attempt to assess
the most significant influences.

A. Roles Can Reduce Inheritance and Decrease Maintainabil-
ity Effort

In common object-oriented programming the classes that
share the same behavior are often part of the same inheri-
tance hierarchy. These classes are extensions of a superclass:
they share or extend its state and behavior. Class inheritance
has many advantages—allows for polymorphism, supports
reusability, and reduces source code duplication—and also
disadvantages—higher maintainability and refactoring effort,
close coupling between the classes in the inheritance hierarchy,
and worse readability of inherited source code.

The DCI architecture is able to reduce the degree of in-
heritance use, decrease the maintainability effort, and increase
the code quality. A high degree of inheritance use requires a
high maintainability effort [6].

If a superclass includes the common behavior of its sub-
classes, it will reduce source code duplication. But DCI allows
to put that behavior into a role. A role can be played by objects
of different classes: the classes from the same inheritance
hierarchy. This reduces the degree of inheritance use without
source code duplication.

An inheritance hierarchy is often formed to exploit poly-
morphism. Often, objects of different classes can participate
interchangeably in the same use case due to their structural
similarity. In common object-oriented programming, those
classes would have to be in the same inheritance hierarchy.
The solution provided by DCI is to create a common role.
The role will work with the common attributes and each object
playing the current role will behave according to the values of
its own attributes. That approach brings additional reduction
of the degree of inheritance use.

B. Generic Roles Can Be Played by Objects of Inappropriate
Classes

The concept of generic roles [7] along with simplicity [2],
makes DCI be good at responding to change. Here we pro-
vided some evidence that DCI supports code maintainability,
flexibility, and readability. However, the agility of DCI brings
out one conceptual issue. Theoretically, a role can be played by
an object of an inappropriate class. In dynamic programming
languages, there is no mechanism to prohibit a data object
from playing inappropriate roles. A developer can easily make
the object play a role and cause wrong role behavior. Wrong
identification of roles or their granularity can enhance that
issue.

V. IMPLEMENTATION ASSESSMENT

In this section, benefits and consequences of implementing
DCI in Qi4J are going to be discussed.

A. Loss of Direct Access to the Domain Model from Context
and Generic Roles

In the end, the purpose of each software product is to
create, read, update, or delete data and connections among
them. In common object-oriented programming, use case
methods have access to objects that store the data of a software
system. Data objects are sent to methods as parameters. This
establishes dependency between use cases and data object
classes.

The system behavior is captured in the form of roles and
their methods. But in the presented Qi4J example a role does
not have access to data objects. Each role has only an indirect
access to the object that plays it. However, the role usually
needs to work with attributes of objects playing other roles.
This forces the developer to create roles whose job is only
to provide access to the attributes of the underlying object.
Listing 13 shows this.

B. Entities Define Their Casting Rules

Java, as a statically typed language, needs the concept
of methodless roles: identifiers. In Qi4J, which roles can be
played by which data objects—or, in other words, which data
object can be cast into which role—is determined directly by
the entities. These casting rules are defined by the entity’s
extend relationships. Each entity extends one data interface and
several roles. By this, the casting rules are kept in one place to
support readability of source code and support capturing the
intent of the programmer. Listing 14 demonstrates this.

public interface SellerEntity extends EntityComposite,
//Data
SellerData,
//Roles
ApproverRole,
ContractorRole,
InsurerRole

{}

@Mixins(InsuranceContractRole.Mixin.class)
public interface InsuranceContractRole extends TransientComposite {

/* The interface represents the data of the objects
playing current role */

public interface InsuranceData {
/* The attributes from the data object */
@Optional Property<<Date>> createDate();
@Optional Property<Date> signDate();
@Optional Property <InsurerRole> seller();
@Optional Property<Boolean> isApproved();

abstract class Mixin implements InsuranceContractRole {
@This
InsuranceData data;
public void setCreateDate(Date d) { data.createDate().set(d); }
public void setSignDate(Date d) { data.createDate().set(d); }
public void setInsurer(InsurerRole i) { data.seller().set(i); }
public void setApproveFlag(Boolean b) { data.isApproved().set(b); }

Listing 13. An example of the role providing access to the attributes of the
object that plays it.

No direct access to data (or domain) objects is not a
disadvantage. Access via roles and their operations reduces
dependency between the system state and behavior. This
complies to DCIL.

Listing 14. An example of an entity defining its casting rules.

C. Interfaces Instead of Classes as Templates for Objects

Usually, objects are instances of classes. The presented DCI
implementation in Qi4J does not use classes as templates for
objects. Classes are replaced with interfaces and this brings in
many limitations. Class attributes cannot be used. Each method
has to be defined in the nested class and its signature has to be
duplicated in the interface body. Qi4J uses interfaces for other
purposes. Java interfaces have usually only a couple of lines,
but in Qi4J the number of lines per interface is significantly
higher. This is another consequence we have to deal with.

In Qi4J, objects are instances of composite interfaces
(e.g., EntityComposite and TransientCompisite) and have to
be managed via the framework, namely its UnitOfWork and
TransientBuilderFactory interfaces. This can be considered as
another framework trade-off.

D. No Access Management of Data Class Attributes and
Methods

Section III-A introduced the org.qi4j.api.property.Property
interface. Its purpose is to enable storing the data attributes
in a data interface. Each property has a public identifier and
offers both set and get methods. That concept does not allow
to modify the access to the attribute. This is not necessarily a
negative consequence, but it should be mentioned.

E. No Direct Support of Polymorphism

According to DCI, a context algorithm consists of calls
to role methods. A role method works with attributes of the
data object playing the current role. Section III-C described
that process. The whole use case behavior is implemented in
roles and in their methods. Roles are generic and their methods
are generic, too. That concept disables the standard usage
of polymorphism, an important feature of common object-
oriented programming.

However, there is a way to mimic polymorphism both at
the level of the context and role. Each context can explicitly
choose the right methods of the right role object. Polymor-
phism chooses the methods implicitly according to the type of
the object. In DCI, the developer has that control.

Another way how to mimic polymorphism is to compare
attributes of the @This object. If a domain object contains no
attribute, Qi4J does not map it and it remains with the null
value. Listing 15 illustrates this.

@Mixins(InsurableRole.Mixin.class)
public interface InsurableRole extends TransientComposite {
public void insure(InsuranceContractRole insurance);
/* The interface represents the data of the objects
playing current role */
interface Data {
@Optional Property<Double> price();
@Optional Property <Boolean> isNew();

abstract class Mixin implements InsurableRole {
@This
Data data;
public void insure(InsuranceContractRole insurance) {
if(data.isNew()!=null) {
insurance.setAnnualPayment(data.price().get());

else {
insurance.setAnnualPayment(new Double(0.0));
}
}
}
}

Listing 15.
attributes.

The example of mimicking polymorphism by mapping the

VI. RELATED WORK

Oberg presented how DCI can be implemented in Java
focusing on how roles can be implemented and how objects
can play them [8]. Oberg’s role implementation in Qi4J is
the basis for the DCI implementation presented in this paper.
However, Oberg’s DCI implementation does not consider the
use of the data part to store the system state. In Oberg’s
implementation the data were stored in roles, but this does
not match the idea of stateless roles in DCI [2].

Oberg also focuses on entities and their references rather
than data interfaces. This leads to the use of the Association
and ManyAssociations references instead of the Property ref-
erence.

Oberg described some implementation issues of common
object-oriented programming, too. He’s criticizing code dupli-
cation and large number of methods in classes.

VII. CONCLUSIONS

This paper reports an assessment of DCI via its Qi4J
implementation and beyond based on an independent study of
a small car dealer system development. Two most important
conceptual findings are that roles can reduce inheritance and
decrease maintainability and that generic roles can be played
by objects of inappropriate classes. The findings specific to the
Qi4J implementation include loss of the direct domain model
access from the generic context roles, entities defining their
casting rules, use of interfaces instead of classes as templates
for objects, no access management of the data class attributes
and methods, and no direct support of polymorphism.

ACKNOWLEDGMENT

The work reported here was supported by the Scientific
Grant Agency of Slovak Republic (VEGA) under the grant No.
VG 1/1221/12. This contribution/publication is also a partial
result of the Research & Development Operational Programme

for the project Research of Methods for Acquisition, Analysis
and Personalized Conveying of Information and Knowledge,
ITMS 26240220039, co-funded by the ERDF.

REFERENCES

[1] B. Eckel, Thinking in Java, 4th ed. Prentice Hall, 2006.

[2] J. O. Coplien and G. Bjgrnvig, Lean Architecture: for Agile Software
Development. Wiley, 2010.

[3] E. Gamma, R. Johnson, J. Vlissides, and R. Helm, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1994.

[4] The Apache Software Foundation, “What is Apache Zest?” http://zest.
apache.org/.

[5S] “Qi4j introduces composite oriented programming,” http://www.infoq.
com/news/2007/11/qi4j-intro.

[6] S. K. Dubey and A. Rana, “Assessment of maintainability metrics for
object-oriented software system,” ACM SIGSOFT Software Engineering
Notes, vol. 36, pp. 1-7, 9 2011.

[7]1 T. Reenskaug and J. O. Coplien, “The DCI architecture: A new vi-
sion of object-oriented programming,” http://www.artima.com/articles/
dci vision.html, 3 2009.

[8] R. Oberg, “DCI in practice,” https://vimeo.com/8235651.

