
Extracting Relations Between Organizational Patterns Using
Association Mining

Shakirullah Waseeb
Software Engineering Department, Faculty of Computer

Science, Nangarhar University
Afghanistan

Waheedullah Sulaiman Khail
0000-0003-1494-2499 Institute of Informatics, Information
Systems and Software Engineering, Faculty of Informatics

and Information Technologies, Slovak University of
Technology in Bratislava

Slovakia

Haji Gul Wahaj
Database and Information System Department, Faculty of

Computer Science, Nangarhar University
Afghanistan

Valentino Vranić
0000-0001-9044-4593 Institute of Informatics, Information
Systems and Software Engineering, Faculty of Informatics

and Information Technologies, Slovak University of
Technology in Bratislava

Slovakia

ABSTRACT
Patterns are powerful when used in combinations. Identifying rela-
tionships between patterns is challenging. The existing approaches
and pattern formats reflect the relationships with other patterns in
a very informal and traditional way. We are proposing an automatic
approach which discover such relationships from the patterns de-
scriptive text using text mining and natural language processing
techniques. In this work, we demonstrate how it contributes in
inference of relationships and its strength among patterns.

CCS CONCEPTS
• Software and its engineering → Agile software develop-
ment;Collaboration in software development; • Information
systems → Association rules.
KEYWORDS
patterns, pattern relationship, organizational patterns

ACM Reference Format:
ShakirullahWaseeb,Waheedullah SulaimanKhail, Haji GulWahaj, andValentino
Vranić. 2020. Extracting Relations Between Organizational Patterns Using
Association Mining. In European Conference on Pattern Languages of Pro-
grams 2020 (EuroPLoP ’20), July 1–4, 2020, Virtual Event, Germany. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3424771.3424817

1 INTRODUCTION
Patterns exist from late 70’s [2, 3]. Organizational patterns of ag-
ile software development were published in 2004 by Coplien and
Harrison. These are linked documents describing proven strategies
for those problems that frequently occurs in a certain context [9].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7769-0/20/07. . . $15.00
https://doi.org/10.1145/3424771.3424817

They are used to build an organization from start or solve an orga-
nizational issue within an organization [9]. Patterns are considered
a problem solution pair. A pattern then describes how a solution
solves a specific problem [6]. The pattern solution has to be de-
scribed in such a way that the user of the pattern can decide if
this solution has created an added value. Each solution has syntax.
This syntax is a description that shows where the solution can fit
in a larger, more comprehensive design and which other solution
can improve this design. This is where the relationships between a
solution and other solutions are created [6]. For example, a larger
solution might be the Size The Organization pattern [9] where the
organization will build a start up team. Growing the organization
graciously is part of building the team. One way to grow the team
is through the Phasing It In pattern [9]. Another way is through the
Apprentice Ship pattern [9].

According to Coplien and Harrison [9], a pattern language is a
language that comprises patterns and the rules to put those patterns
together in meaningful ways creating pattern sequences. Patterns in
a pattern language can be combined in different ways like words in
a sentence. In order to make a correct sentence, one needs to follow
specific rules. Not all combinations of words will result in mean-
ingful sentences. A pattern language tells how to build a whole, a
system. Although isolated application of one or several patterns is
not uncommon in practice, building a whole system with patterns
requires understanding the pattern language. Organizational pat-
terns can be applied to create new organizations from scratch or
they can be applied to existing organizations [9]. Organizational
patterns play a crucial role in agile software development [13, 21].

Patterns are not a new phenomenon, but there are still difficul-
ties in selecting the appropriate pattern for a particular existing
problem [7, 11]. To achieve a better result and fully utilize an ap-
propriate organizational pattern, we must thoroughly understand
not only the pattern itself, but also the pattern language it belongs
to [2, 16, 19]. Furthermore, pattern languages in general do not
always reveal every reliable connection with other patterns [10].
Most of the authors refer to other related patterns in the pattern
description. However there are many hidden relationships between
patterns in the pattern description. These hidden relationships can

https://doi.org/10.1145/3424771.3424817
https://doi.org/10.1145/3424771.3424817

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany S. Waseeb, W. Sulaiman Khail, H. Gul Wahaj, and V. Vranić

be described by area’s of interest. To have a better understanding,
organizational patterns and their relationships are a difficult task
by itself; and thus application of appropriate patterns might be
challenging.

Patterns are powerful and effective when they are combined to
solve a problem. Combining multiple patterns requires knowledge
about the relationships they hold. Different approaches are being
taken for defining and eliciting such relationships [6, 10, 18, 19].
Identifying relationships between patterns are difficult because
existing formats reflect the relationships in a very informal way.

Patterns connected with each other form a network where pat-
terns are typically applied in combination with each other [2, 3,
8, 16, 22]. These connections are used to select the right pattern
for the problem in hand and navigate to other relevant patterns
to establish a corresponding sequence of patterns. Pattern authors
put a lot of effort in writing their patterns. However, if readers do
not understand patterns or the links between them, then it will be
difficult to apply them.

The relationships between patterns are defined on semantic level.
Usefulness of pattern sequences solely depends on the nature of
these relationships. These relationships can be extracted automati-
cally using text mining and natural language processing techniques.

It is crucial to note that there are many patterns available and
have some relationships between them. Furthermore, new patterns
will be observed. For the time being, it might be clear that few
patterns could be combined through some predefined pragmatics.
However, there is still the need for an automatic method or al-
gorithm to discover such relationships in patterns. Therefore, an
automatic method is required to extract similarities and connec-
tion links which exist between organizational patterns. This is the
method we propose in this paper. It involves text mining techniques,
such as bags-of-words model, n-gram model, tf-idf, and association
mining. This method extracts relationships/associations that ex-
ist between organizational patterns. The proposed method helps
not just in navigating and selecting a pattern to be applied in a
given context, but it also helps in identifying which pattern is best
suited after a given pattern. This way, we can compose patterns
meaningfully and create useful and appropriate pattern sequences.

The rest of the paper is structured as follows. Section 2 presents
an overview of the state of the art in expressing relationships be-
tween patterns. In Section 3, we propose how the association rules
mining can be applied to infer the relationships between organiza-
tional patterns by using n-grams as fuel for driving such relation-
ships. Section 4 explains how we evaluated our approach. Section 5
relates our approach to the work done by others. Section 6 con-
cludes the paper.

2 EXPRESSING RELATIONSHIPS BETWEEN
PATTERNS

Patterns are organized in pattern languages, which connect patterns
together. However, pattern languages do not reveal all the infor-
mation on how the relevant patterns are connected to each other.
Pattern languages are primarily described as being networks of pat-
terns, which does not provide a clear and unambiguous foundation
to reveal their nature [10].

Relationship between patterns are the links between them which
connect themwith each other. Relationships can be created by refer-
encing a pattern within another pattern’s description. The simplest
way of finding these relationships is by finding references to other
patterns without considering their context. These relationships
point to similar patterns or to other patterns that could be applied
next, thus indicating a pattern sequence. Such relationships are
limited to known patterns.

Other types of relationships are by describing areas of interest of
patterns in a pattern language. There are many hidden relationships
between patterns in the pattern description.

Pattern languages are documented by different authors. It might
be necessary to identify interdependencies and overlaps between
these patterns and pattern languages as well. The selection of an ap-
propriate solution requires sufficient expertise for both the relevant
patterns and domain in which they are applied.

3 TEXT PROCESSING AND ASSOCIATION
MINING

Agrawal et.al [1] introduced an efficient algorithm that generates
all significant associations between the items in a database. The
algorithm mines a large collection of basket data type transactions
for association rules between sets of items with some minimum
specified confidence [1]. We use the bag-of-words model for mining
the association rules between the sets of patterns with a specified
minimum confidence.

Terms distribution information are often observed considerably
effective for achieving high precision [14]. We use tf-idf to weight
and score the bag-of-words vocabulary for discovering relation-
ships between organizational patterns. Relationship strength is
determined from the co-occurrence of vocabulary among the pat-
terns. The complete process is shown in Figure 1. The method of
extracting such relationships is described in the following sections.

Figure 1: Process of Mining Association Rules

Extracting Relations Between Organizational Patterns Using Association Mining EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

3.1 Preparing the Dataset
Our dataset was prepared by taking the description text of thirty
organizational patterns from the Organizational Patterns website.1
We kept the size small just for the simplicity. This approach can
be applied on any catalogue of patterns with any size. Each pat-
tern was put into a separate text document. These organizational
pattern descriptions are just plain natural language text, i.e., they
are unstructured data. However, the association mining algorithm
requires the data to be in a relational form. Therefore, the bag-
of-words (BoW) model is used for extracting features for use in
association mining.

Text preprocessing is performed by cleaning the text (ignoring
case, eliminating punctuation), removing stop-words, and applying
stemming. Stop-words are frequent words which don’t contain
much information, e.g., is, the, in, or are). Stemming is reducing
words to their stems (e.g., develop from developing). The scope of
vocabulary is changed by using n-grams (uni-gram; vocabulary of
one-word, and bi-grams; vocabulary of two-word pairs) model to
allow bag-of-words to capture more meaning from the text.

Term Frequency – Inverse Document Frequency (tf-idf) is used
to scale the frequency of words by how often they appear across
the documents. The words with document frequency one are dis-
regarded. By having BoW in place, we build the required matrix
for mining association rules using the Apriori[1] algorithm. The
columns of the matrix represent organizational patterns, while rows
represent the vocabulary of the BoW, where each row indicates
the existence of the vocabulary word against each organizational
pattern. The existence criteria is constrained by the tf-idf parameter.
The matrix sample is shown in Table 1.

3.2 Frequent Text Patterns
As we said, organizational patterns are described using text. The
text is either about context, problem, solution and sometimes even
consequences. Our approach is to use text mining techniques to
find relationships between organizational patterns.

Apriori is an efficient algorithm for the problem of mining a
large collection of basket data transactions for association rules
between sets of items with some specified minimum confidence [1].
An example of such an association is the statement that 90% of
transactions that purchase bread and butter also purchase milk. The
antecedent of the rule consists bread and butter and the consequent
consists of milk alone. The number 90% is the confidence factor for
the rule. An association rule is an expression of the form X =⇒ Y ,
whereX and Y are sets of items. The intuition of such a rule reveals
that the transactions of the database which contains X tend to
contain Y [1].

The same notion is used to find the association rules between
organizational patterns. Thus, an association rule for organizational
patterns is an expression X =⇒ Y , where X and Y are sets of
patterns, which describe the fact that occurrence of words con-
strained by a predefined parameter tf-idf appeared in pattern X
tends to appeared in pattern Y. The strength of the relationship is
determined by the frequent words appearance constrained by tf-idf
in relative patterns.

1http://www.orgpatterns.com/Organizational-Patterns-of-Agile-Software-
Developm/bookoutline

3.3 Mining the Association Rules
LetX = {op1,op2, ...,opn } be a set of organizational patterns. Let D,
the task relevant data, bag-of-words where each vocabulary word
appears in a pattern set P such that P ⊆ X . A set of patterns S ⊂ X
is called pattern-set. We say that a vocabulary word appeared in
pattern-set S if S ⊆ P . An association rule is an implication of the
form A =⇒ B, where A ⊂ X , B ⊂ X , and A ∩ B , ∅. The rule
A =⇒ B holds in set D with support s , where s is the percentage
of vocabulary words in D that occur in A∪ B (i.e., the union of sets
A and B) This is taken to be the probability, P(A ∪ B):

support(A =⇒ B) = P(A ∪ B) (1)

The A =⇒ B rule has confidence c in set D, where c is the
percentage of vocabulary words in D occurs in A that also occurs
in B. This is taken to be the conditional probability, P(B |A). That is,

conf idence(A =⇒ B) = P(B |A) =
support(A ∪ B)

support(A)
(2)

Equation (2) shows that the confidence of rule A =⇒ B can
be easily derived from the support counts of A, B, and A =⇒ B.
That is, once the support counts of A, B, and A ∪ B are found, it
is straightforward to derive the corresponding association rules
A =⇒ B and B =⇒ A and check whether they are strong. Thus,
the problem of mining association rules can be reduced to that of
mining frequent pattern-sets.

In general, association rule mining can be viewed as a two-step
process:

(1) Find all frequent pattern-sets. By definition, each of these
pattern-sets will occur at least as frequently as a predeter-
mined minimum support count (min-sup).

(2) Generate strong association rules from the frequent pattern-
sets. By definition, these rules must satisfy the minimum
support and minimum confidence.

Support and confidence are two important measures for extract-
ing rules. Support reflects the usefulness, while confidence reflects
the certainty of discovered rules. The support metric is defined
for discovering/building pattern-sets. Antecedent support is the
support for pattern A which is the proportion of the vocabulary
words appeared in given pattern. Consequent support computes
the support for consequent pattern B. Similarly, support metric
computes the combined support of pattern-set (A ∪ B). These met-
rics are used for computing the confidence of a rule (A =⇒ B),
which is the probability of seeing the n-gram words appeared in
the consequent also appeared in the antecedent.

Consider the association rule between Architect Controls Product
(ACP) and Architect Also Implements (AAI). The bag-of-words has
1,537 vocabulary. ACP has 254 vocabulary from the bag-of-words,
and the AAI has 355. The ACP and AAI both has 116 vocabulary
in common. Now the support and confidence is calculated for the
rule (ACP =⇒ AAI) as:

support(ACP) = 254/1, 537 = 0.17 (3)

support(AAI) = 355/1, 537 = 0.23 (4)

http://www.orgpatterns.com/Organizational-Patterns-of-Agile-Software-Developm/bookoutline
http://www.orgpatterns.com/Organizational-Patterns-of-Agile-Software-Developm/bookoutline

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany S. Waseeb, W. Sulaiman Khail, H. Gul Wahaj, and V. Vranić

Pattern (’develop’,’team’) (’develop’, ’role’) (’totalitarian’, ’control’)
ArchitectControlsProduct (ACP) 1 1 1
DeveloperControlsProcess (DCP) 1 1 1
ArchitectAlsoImplements (AAI) 1 1 1
DomainExpertiseInRoles (DEIR) 0 1 0
SizeTheOrganization (STO) 1 0 0

Table 1: A matrix sample with (0,1) values for n-gram existence against organizational patterns.

Terms ACP DCP AAI DEIR STO
(’develop’,’team’) 1 1 1 0 1
(’develop’, ’role’) 1 1 1 1 0
(’totalitarian’, ’control’) 1 1 1 0 0

Table 2: The transpose matrix of Table 1.

support(ACP ∪AAI) = 116/1, 537 = 0.08 (5)

conf idence(ACP =⇒ AAI) = 0.08/0.17 = 0.46 (6)
The support of 8% for association rule in Equation (5) means that

8% vocabulary of bag-of- words under analysis show that both DCP
and ACP has the possibility of having relationship. The confidence
signifies the strength of a pattern/pattern set in a relationship. The
confidence of 46% in Equation (6) means that the ACP pattern with
46% of its vocabulary claims its strength in the relationship of (ACP,
AAI). Some samples of the extracted rules are listed in Table 3.

4 EVALUATION
As we said in Section 3.1, as our dataset, we used the description of
thirty organizational patterns of agile software development from
the Organizational Patterns website.2, which contained a total of
127 641 words. After the data-set text cleaning, a bag-of-words
with a vocabulary size of 1 537 was constructed. The method was
evaluated by changing tf-idf, support, and confidence parameters.
The change of tf-idf from 0.1 toward 0.3 reduced the number of as-
sociation rules while the quality of the rules improved. The change
in the support value result in a number of pattern combination
sets: two-pattern sets, three-pattern sets, and four-patterns sets.
The value of 0.04 for the support resulted in the generation of very
few pattern sets: few two-pattern sets, rare three-pattern sets, and
zero four-pattern sets. The confidence value resulted in a change of
the number of association rules that can be observed from the the
confidence value change graph for the values 0.3 to 0.5, as shown
in Figure 2.

The strength of an association rule depends on the tf-idf value:
the higher the tf-idf value, the stronger the association rule. Based
on the evaluation, we further investigated the method results for the
parameters tf-idf set to 0.2, min-support for frequent pattern-set set
to 0.02, andmin-confidence threshold set to 0.3.With this parameter
configuration, a total of 372 association rules with sampling of
pattern-set size 4 were mined. A pattern set with size 2 had 88 rules:
276 rules with size 3, and 8 rules with size 4. The min-support 0.02
2http://www.orgpatterns.com/Organizational-Patterns-of-Agile-Software-
Developm/bookoutline

discovered all possible (k-patterns-set; k=2,040) with at least 2% of
support. The 0.3 min-confidence confirmed at least 40% of strength
in a relationship. The value of 0.2 for the tf-idf to consider the most
important words.

Figure 3 shows the resulting support and confidence for asso-
ciation rules mined for tf-idf set to 0.2, support set to 0.01, and
confidence set to 0.2. Rules carrying higher confidence with lower
support and high support and lower confidence reveal the dom-
inance of a given pattern over other patterns, which means that
the other patterns have very low influence in the association and
vice versa. Low confidence and low support shows dissimilarities
between patterns. Therefore, we considered 0.02 support to ensure
significant similarities between patterns. Similarly, we considered
0.3 confidence to have association rules for patterns having essential
strength in the relationship. Once we gained these associations, we
started to observe the patterns for finding the type of association.

As depicted in Figure 4, mined organizational patterns associ-
ation rules can be visualized using a network graph. The nodes
represents organizational patterns, and the edges represent asso-
ciation rules. The color and style of an edge reflects the strength
of the relationship. A solid blue edge represent stronger, dashed
edge green represents normal, and red dotted represents a weaker
relationship. Such a diagram reveals a way of navigating between or-
ganizational patterns. Recall that in the introduction we mentioned
how the Size The Organization, Phasing It In, and Apprenticeship
organizational patterns are related. This association can be clearly
seen in Figure 4 between the nodes STO (Size The Organization),
PII (Phasing It In), and A (Apprenticeship). This means that this
approach not only mines associations between patterns, but also
shows the navigation between them.

4.1 Qualitative Evaluation
Once we extracted the rules, we started to explore the patterns to
uncover the types of the relationships between them. Based on the
strength of associations visualized in Figure 4, we selected Devel-
oper Controls Process (DCP), Architect Controls Product (ACP), and
Architect Also Implements (AAI) as patterns with stronger associ-
ations, and Size The Organization (STO), Phasing It In (PII), and
Apprenticeship (A) as patterns with normal strength associations.

http://www.orgpatterns.com/Organizational-Patterns-of-Agile-Software-Developm/bookoutline
http://www.orgpatterns.com/Organizational-Patterns-of-Agile-Software-Developm/bookoutline

Extracting Relations Between Organizational Patterns Using Association Mining EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

patt(B|A) sup(A ∪ B) conf(A =⇒ B)
Architect Controls Product | Architect Also Implements 0.08 0. 46
Architect Controls Product | Developer Controls Process 0.07 0. 41
Developer Controls Process | Architect Controls Product 0.07 0.42

Table 3: Pattern association rules with the corresponding support and confidence.

Figure 2: Confidence value change graphs.

We studied these patterns according to common n-gram words
shown in Figures 5 and 6. It was observed from the sentences in
which these words occur that these patterns support each other.
Consider these examples for DCP, ACP, and AAI:

• develop, team:
– DCP: Totalitarian control is viewed by most development
teams as a draconian measure.

– ACP: The architect is the principal bridge-builder between
development teams members.

– AAI: But even if that was possible, totalitarian control is
viewed bymost development teams as a draconian measure.

• inform, flow:
– DCP: The right information must flow through the right
roles.

– ACP: However, the right information must flow through
the right roles.

– AAI: The right information must flow through the right
roles.

• develop, process:
– DCP: The developer is central to all activities of this end-
to-end software development process.

– ACP: Architectural control must balance developer au-
thority. . . their ownership of the code development process.

– AAI: The architects also learn by seeing, first-hand, the
results of their decisions and designs: an important place
for feedback in the development process.

• control, product and control, process:
– DCP:While the developer controls the process, the architect
controls the product.

– ACP:While the developer controls the process, the architect
controls the product.

The first bi-gram word (develop, team), which appears in sen-
tences of DCP, ACP, and AAI, speaks about a development team
in which different roles are established by resolving the central/-
totalitarian control. The second bi-gram word (inform, flow) also
reveals the importance of the information flow through the right

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany S. Waseeb, W. Sulaiman Khail, H. Gul Wahaj, and V. Vranić

Figure 3: 1 416 rules among thirty organizational patterns.

Figure 4: A network graph for minded association rules.

roles, which could be considered as a solution for the problems
raised due to the central control. The last bi-gram word (control,
product) provide interesting information about roles of an architect
and developer.

Consider these examples for STO, PII, and A:
• hire:
– STO: To decide whom to hire into a nascent organization,
use patterns likeDomain Expertise In Roles andArchitecture
Team.

– PII: Growing projects must figure take into account out
how to grow long-term staff: whom to hire, how many to
hire, and when to hire them.

– A: Turn new hire into experts (see DomainExpertiseIn-
Roles) through an apprenticeship program.

• critic, mass :
– STO: In addition, if an organization is too small, the team
won’t have a critical mass and productivity will suffer.

– PII: You need enough people for a critical mass.
– A: You need enough people for a critical mass.

• people:
– STO: Adding people late to a project rarely helps complete
that project on time and within budget.

– PII: The right set of initial people (Size The Organization)
sets the tone for the project, and it’s important to hire the
key people first.

– A: It is better to apprentice people than to put people
through a “trial by fire” that may damage the project.

• domainexpertiseinrol:
– STO: To decide whom to hire into a nascent organization,
use patterns likeDomain Expertise In Roles andArchitecture
Team.

– PII: Key project players have been hired or otherwise
brought into the project and cover the necessary expertise
(Domain Expertise In Roles), but the project needs more
staff.

– A: Turn new hires into experts (see Domain Expertise In
Roles) through an apprenticeship program.

The exploration of the n-grams shows that all the three patterns
are about how to manage the size of the organization. It leads us
how to start, who to hire, and how to hire the best.

4.2 Discussion
Organizational patterns of agile software development are linked
document, describing proven strategies for those problems that
frequently occur in certain contexts. As patterns are solutions to
problems, they should be presented and described in a way that
their user can decide if the solution created by them adds value. The
strength of patterns is in their combination, and this is where the re-
lationships between them is created. These relationships are defined
and visualized using different approaches [2, 3, 6, 8, 10, 16, 18, 19, 22].
Mostly, these approaches are traditional and the relationships are
annotated by the user explicitly. We use an automated approach to
find such relationships/associations with text mining and natural
language processing techniques. However, there is still room to
improve this approach in order to mine semantically sound rela-
tionships/associations.

We used n-grams without considering their context semantics.
Words can have multiple meanings causing ambiguity, which is a
common phenomenon in natural languages [12]. The meaning of
the word in a text cannot be judged only on its own, but depends
on the context the word appears within. Consider the word status,
which in example (1) means the utterance of someone, while in
example (2) it means a territory. Such words are called homonyms.
Similarly, the words talk and state are synonyms, but in the con-
text of examples (1) and (3) have to different meaning. Hence, the
association rules we mined can be further improved by incorpo-
rating the word sense disambiguation techniques into our current
approach. Using sentence level interpretation or discourse analysis
could impart the relationship types between patterns.

Extracting Relations Between Organizational Patterns Using Association Mining EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

Figure 5: Stacked plot for tf-idf of common n-grams among ACP, AAI, and DCP.

(1) Note that since ConwaysLaw states that organization and ar-
chitecture are isomorphic, that the architecture must follow
the market.

(2) The project was spread across three states and two countries,
though most of the work centered in two states.

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany S. Waseeb, W. Sulaiman Khail, H. Gul Wahaj, and V. Vranić

Figure 6: Stacked plot for tf-idf of common n-grams among STO, PII, and A.

(3) Yet the system must act as a system, and to do that the parts
must talk to each other.

5 RELATEDWORK
There exist works in the literature which helps in selection of
patterns based on relationships between them. Some works used
graphs to help in representing relationships between patterns hence
make it easy in selection of patterns. While others used formal
methods and grammars to express relationships between patterns.

Seidel in his work [16] analyzed the patterns interrelations using
network analysis methods by considering the pattern language as
a graph. The graph G is an ordered pair G = (V , E) of vertices V
and edges E. Each vertex represent a pattern and each edge is com-
posed of relationship between two patterns. The pattern network
of 45 vertex and 136 edges was built. The graph representation of
a pattern language constitutes all pattern relationships in a pat-
tern language. An overview of these relationship types and how
to identify them in a pattern language has been given. The inter-
relations being used were: contains, contained by, and similar. The
degree (number of patterns linked between patterns) of the pattern
indicates how central or isolated a patterns is in the network.

Rouhi and Zamani [15] revised and extended the GEBNF meta
modeling notation [4] and provided more abstraction and flexi-
bility in the specification of rules. Then, they applied the revised
notation to model class and sequence diagrams of UML which is
the popular modeling language of design pattern solutions. Also,
inspired by the notion of systematic pattern selection method of
Zdun [22] and exploiting the induced functions of the UML class
and sequence diagrams, they presented a formal model for a given
pattern language.

Subburaj Ramasamy and co in their work [17] the impact of
design pattern application have discusses how to select design
patterns. In their work, they have proposed to keep in mind the
Following points while selecting a pattern: scan the intent part of
patterns, study other similar patterns, examine causes of redesign,
and identify the relationship between patterns. However, they have
not proposed any specific method which will help in applying the
above mentioned steps.

Zdun proposed an approach to support the selection of patterns
based on desired quality attributes and systematic design based on
patterns [22]. The proposed a grammar annotated with effects on
quality goals. Complex design decisions are further analyzed by
using the design spaces covered by a set of related software patterns.
The approach helps in finding and categorizing the appropriate
software patterns systematically. However, this approach might
not be applicable to solve very large design problems because the
decisionmaking on selecting a pattern variant or pattern alternative
is very complex.

Sulaiman Khail [18] proposed a new pattern format in which the
relationships were reflected in the pattern structure as keywords.
These relationship keywords would be used to move between pat-
terns and compose patterns.

Becker et al. [6] in their work focused on the relationships be-
tween context-patterns, which forms the syntax of a pattern lan-
guage and can be derived from pattern relationship tables.

Alexander also noted that adjacent patterns should be applied
as close in sequence as possible [3], but neither Alexander’s theory
nor language diagrams indicate how to order adjacent patterns.

Bayley and Zhu [4, 5]have proposed a formal language as well as
a set of operators for composing related patterns. These operators

Extracting Relations Between Organizational Patterns Using Association Mining EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

have been used to compose the GoF design patterns [20] and sketch
the pattern relationships.

The presented set of relationship and their strength in our work
is more precise. Set of relationships and their confidence strength is
drawn automatically, by using association rulemining approach and
the basic natural language processing techniques such as stemming,
stop-words, n-grams and frequent terms. The relationship set (k-
patternset) is built based on the terms document frequency and
inverse document frequency, minimum-support, and confidence-
threshold parameters.

6 CONCLUSIONS AND FURTHERWORK
relationships forms base for patterns combinations. Therefore, to
combine various organizational patterns and to create sequences
of them, it is important to know how patterns are related with
each other and how could be associated. In order to extract such
relationships from a group of organizational patterns, we propose to
use text mining techniques and algorithms. The proposed technique
is an approach to discover relationships between organizational
patterns, which are based on frequent vocabulary among patterns.
The relationship strength is determined from the percentage of
vocabulary appeared among the patterns. The proposed method
will make patterns more readable and will cause to solve bigger
problems. The future work will be to find relationship type of mined
rules. To know the type of relationship, is it either solution of a
problem or is a supportive type. We may add semantic information
via NLP.

ACKNOWLEDGMENTS
We would like to thank Niels Seidel for being our shepherd and for
his constructive remarks. Our sincere thanks also go to our writer’s
workshop group members: Michael Weiss, Eduardo Fernandez, and
Rafik Tighilt.

The work reported here was supported by the Scientific Grant
Agency of Slovak Republic (VEGA) under grant No. VG 1/0759/19
theOperational Programme Integrated Infrastructure for the project
Research and Development of Software Solution with the Applica-
tion of Blockchain Technology in the Field of International Rail and
Container Transport of Goods (ITMS code: 313022V816), co-funded
by the European Regional Development Fund (ERDF).

REFERENCES
[1] Rakesh Agrawal, Tomasz Imieliundefinedski, and Arun Swami. 1993. Mining

Association Rules between Sets of Items in Large Databases. In Proceedings of the
1993 ACM SIGMOD International Conference on Management of Data (SIGMOD

’93). Association for Computing Machinery, New York, NY, USA, 207–216. https:
//doi.org/10.1145/170035.170072

[2] Christopher Alexander. 1979. The Timeless Way of Building. Oxford University
Press.

[3] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Joaquim Romaguera
i Ramió, Max Jacobson, and Ingrid Fiksdahl-King. 1977. A Pattern Language.
Gustavo Gili.

[4] Ian Bayley and Hong Zhu. 2008. On the Composition of Design Patterns. In
Quality Software, 2008. QSIC’08. The Eighth International Conference on. IEEE,
27–36.

[5] Ian Bayley and Hong Zhu. 2010. Formal Specification of the Variants and Be-
havioural Features of Design Patterns. Journal of Systems and Software 83, 2
(2010), 209–221.

[6] Kristian Beckers, Stephan Fassbender, and Maritta Heisel. 2014. Deriving a
Pattern Language Syntax for Context-patterns. In In Proceedings of 19th Euro-
pean Conference on Pattern Languages of Programs, EuroPLoP 2014. ACM, Irsee,
Germany.

[7] Aliaksandr Birukou. 2010. A survey of existing approaches for pattern search and
selection. In Proceedings of the 15th European Conference on Pattern Languages of
Programs. 1–13.

[8] Frank Buschmann, Kelvin Henney, and Douglas Schimdt. 2007. Pattern-Oriented
Software Architecture: On Patterns and Pattern Language. Vol. 5. Wiley.

[9] James O. Coplien and Neil B. Harrison. 2004. Organizational Patterns of Agile
Software Development. Prentice-Hall.

[10] Michael Falkenthal, Uwe Breitenbücher, and Frank Leymann. 2018. The nature
of pattern languages. cit. on (2018), 14.

[11] Tomáš Frťala and Valentino Vranić. 2015. Animating Organizational Patterns. In
Proceedings of 8th International Workshop on Cooperative and Human Aspects of
Software Engineering, CHASE 2015, ICSE 2015 Workshop. IEEE, Florence, Italy.

[12] Christopher D. Manning and Hinrich Schütze. 1999. Foundations of Statistical
Natural Language Processing. MIT Press, Cambridge, MA, USA.

[13] Predrag Matkovic, Mirjana Maric, Pere Tumbas, and Marton Sakal. 2018. Tra-
ditionalisation of agile processes: Architectural aspects. Computer Science and
Information Systems 15, 1 (2018), 79–109.

[14] Bo Pang and Lillian Lee. 2008. Using Very Simple Statistics for Review Search:
An Exploration. In COLING.

[15] Alireza Rouhi and Bahman Zamani. 2016. Towards a formal model of patterns
and pattern languages. Information and Software Technology 79 (2016), 1–16.

[16] Niels Seidel. 2017. Empirical evaluation methods for pattern languages: sketches,
classification, and network analysis. In Proceedings of the 22nd European Confer-
ence on Pattern Languages of Programs. 1–24.

[17] R Subburaj, Gladman Jekese, and Chiedza Hwata. 2015. Impact of object oriented
design patterns on software development. (2015).

[18] Waheedullah Sulaiman Khail and Valentino Vranić. 2019. Reflecting pattern
relationships in a pattern format. In Proceedings of the 24th European Conference
on Pattern Languages of Programs. 1–5.

[19] Waheedullah Sulaiman Khail and Valentino Vranić. 2017. Treating Pattern Sublan-
guages As Patterns with an Application to Organizational Patterns. In Proceedings
of the 22Nd European Conference on Pattern Languages of Programs, EuroPLoP
2017. ACM, Irsee, Germany.

[20] John Vlissides, Richard Helm, Ralph Johnson, and Erich Gamma. 1995. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley.

[21] Hironori Washizaki, Suthinan Thanintranon, Masashi Kadoya, Yoshiaki
Fukazawa, Takeshi Kawamura, and Joseph W. Yoder. 2014. Analyzing Software
Patterns Network Obtained from Portland Pattern Repository. In Proceedings
of the 21st Conference on Pattern Languages of Programs (PLoP ’14). The Hill-
side Group, USA, Article 8, 6 pages. http://dl.acm.org/citation.cfm?id=2893559.
2893567

[22] Uwe Zdun. 2007. Systematic Pattern Selection Using Pattern Language Grammars
and Design Space Analysis. Software: Practice and Experience 37, 9 (2007), 983–
1016.

https://doi.org/10.1145/170035.170072
https://doi.org/10.1145/170035.170072
http://dl.acm.org/citation.cfm?id=2893559.2893567
http://dl.acm.org/citation.cfm?id=2893559.2893567

	Abstract
	1 Introduction
	2 Expressing Relationships Between Patterns
	3 Text Processing and Association Mining
	3.1 Preparing the Dataset
	3.2 Frequent Text Patterns
	3.3 Mining the Association Rules

	4 Evaluation
	4.1 Qualitative Evaluation
	4.2 Discussion

	5 Related Work
	6 Conclusions and Further Work
	Acknowledgments
	References

