
Reconciling Feature Modeling: A Feature
Modeling Metamodel

Valentino Vranić

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technology

Slovak University of Technology, Ilkovičova 3, 84216 Bratislava 4, Slovakia
vranic@fiit.stuba.sk, http://www.fiit.stuba.sk/~vranic

Abstract. Feature modeling, a conceptual domain modeling technique
used mainly in domain engineering, proved as useful for representing
configurability of concepts by dealing explicitly with commonality and
variability. This paper introduces feature modeling for multi-paradigm
design as an integrative approach and evaluates other approaches to fea-
ture modeling. These approaches differ mainly in the notation of feature
diagrams, but there are also differences regarding the basic notions. The
commonalities and variabilities of the domain of feature modeling are
concisely expressed using feature modeling itself in the form of a fea-
ture modeling metamodel which may serve both for further reasoning on
feature modeling and as a basis for developing feature modeling tools.

1 Introduction

Feature modeling is a conceptual domain modeling technique in which concepts
are expressed by their features taking into account feature interdependencies and
variability in order to capture the concept configurability [1].

A domain is understood here as an area of interest [2]. Two kinds of domains
can be distinguished based on their role in software development: application and
solution domains [2]. An application domain, sometimes denoted as a problem
domain [2], is a domain to which software development process is being applied.
A solution domain is a domain in which a solution is to be expressed (usually a
programming language).

The origins of feature modeling are in FODA method [3], but several other
approaches to feature modeling have been developed. Feature modeling has been
used to represent models of application domains in many domain engineering
approaches to software development beside FODA such as FORM [4], ODM [5],
or generative programming [1].

Feature modeling is used also in multi-paradigm design with feature modeling
(MPDfm), a method introduced in [6] that follows the same process framework
as Coplien’s multi-paradigm design [2], where it was adapted to express both
application and solution domain concepts in order to simplify finding a corre-
spondence and establishing the mapping between the application and solution
domain concepts in transformational analysis. Feature modeling used in MPDfm

http://www.fiit.stuba.sk/~vranic�


is based on Czarnecki-Eisenecker feature modeling [1]. However, it introduces the
following new concepts: concept instantiation with respect to feature binding
time, representing concept instances visually using feature diagrams, concept
references, parameterization of feature models, expressing constraints and de-
fault dependency rules as logical expressions, and a dot convention for referring
to concepts and features.

The rest of the paper is structured as follows. First, Sect. 2 introduces feature
modeling for multi-paradigm design as an integrative approach to feature model-
ing. Next, Sect. 3 evaluates other approaches to feature modeling. Finally, based
on this analysis, Sect. 4 presents a feature modeling metamodel as a feature
model. Sect. 5 concludes the paper and proposes the issues for further research.

2 Feature Modeling for Multi-Paradigm Design

Feature modeling is a conceptual domain modeling technique in which concepts
are being expressed by their features taking into account feature interdependen-
cies and variability in order to capture the concept configurability [1]. Feature
modeling presented in this section is based on the Czarnecki-Eisenecker feature
modeling [1], which has been adapted and extended to fit the needs of MPDfm.

A concept is an understanding of a class or category of elements in a domain.
Individual elements that correspond to this understanding are called concept
instances.

A feature is an important property of a concept [1]. A feature may be com-
mon, in which case it is present in all concept instances, or variable, in which
case it is present only in some concept instances. The features connected directly
to a concept or feature are being denoted as its direct features; all other features
are its indirect features [1].

Any feature may be isolated and modeled further as a concept, therefore
being a feature is actually a relationship between two concepts. However, the
concepts identified only in the context of other concepts, i.e. as their features,
will be referred to as features exclusively in order to emphasize the main concepts
in a domain.

A feature model consists of a set of feature diagrams, information associated
with concepts and features, and constraints and default dependency rules asso-
ciated with feature diagrams. A feature diagram is a directed tree whose root
represents a concept and the rest of the nodes represent its features.

2.1 Feature Diagrams

Each concept is presented in a separate feature diagram. A feature diagram is
drawn as a directed tree with edge decorations. The root represents a concept,
and the rest of the nodes represent features. Edges connect a concept with its
features, and a feature with its subfeatures.

Concept instances are represented by configurations of concept features,
which are achieved by a selection of the features according to their variabil-
ity. A feature can be included in a concept instance only if its parent has been



included. A concept instance must have all the mandatory features and can have
the optional features.

There are two types of edges used to distinguish between mandatory features,
ended by a filled circle, and optional features, ended by an empty circle. A
concept instance must have all the mandatory features and can have the optional
features.

The edge decorations are drawn as arcs connecting disjunct subsets of the
edges originating in the same node. There are two types of arcs, an empty and
filled one, used to denote alternative features and or-features, respectively. Ex-
actly one feature can be selected from the set of alternative features, and any
subset or all of the features can be selected from the set of or-features. If optional,
each selected alternative or or-feature may still be left out.

A concept or feature may be open, which means it is expected to have new
direct variable subfeatures. This is indicated directly in feature diagrams by
introducing the open concept or feature name in square brackets and optionally
by ellipsis at its subfeatures.

C1

[f3]f2f1 f4

f6f5 f7

...

C1 (R)

C2

g2g1

C1

[f3]f2f1 f4

f6f5 f7

C2

g2g1

...

(a) (b) (c)

Fig. 1. Feature diagram examples.

An example of a feature diagram with different types of features is presented
in Fig. 1a. Features f1, f2, f3, and f4 are direct features of the concept C1,
while other features are its indirect features. Features f1 and f2 are mandatory
alternative features. Feature f3 is an optional feature. Features f5, f6, and f7 are
mandatory or-features. Feature f3 is open; ellipsis indicates that new features
are expected in the existing group of or-features.

A concept can be referenced as a feature in another or even in its own feature
diagram, which is equivalent with the repetition of the whole feature diagram of
the concept. Figure 1b presents the feature diagram of the concept C2 that refers
to the concept C1. Figure 1c presents the same diagram, but with the reference
C1 r© expanded. To distinguish concept references from the rest of the features
in a feature diagram, the r© mark1 is being put after the name of a concept
reference.

1 For technical reasons, it will be presented as (R) in diagrams.



Additional information may be associated with concepts and features, which
depends on the application, so it should be as configurable as possible.2 A con-
cept reference may be associated with its own information as any other feature,
but the information associated with the concept it references applies to it, too.

2.2 Constraints and Default Dependency Rules

Feature diagrams define the main constraints on feature combinations in concept
instances. Since feature diagrams are represented as trees, in all but simplest
cases it is impossible to express all the constraints solely by a feature diagram.
Additional constraints are expressed in a list of constraints associated with the
feature diagram. Also, a list of default dependency rules is associated with each
feature diagram in order to specify which features should or should not appear
together by default.

Constraints and default dependency rules are specified by predicate logic
expressions formed out of specific and parameterized names of concepts and
features (see Sect. 2.3), and commonly used logical connectives (e.g., not ¬, and
∧ , or ∨ , xor ∨ , implication ⇒, and equivalence ⇔), commonly used quantifiers
(e.g., universal quantifier ∀ and existential quantifier ∃), and parentheses. A
feature name f in constraint or default dependency rule expressions stands for
is in instance(f), a predicate which is true if f is embraced in the concept instance,
and false otherwise.

The intention of using predicate logic to express constraints and default de-
pendency rules is to avoid ambiguities natural language is prone to. At this stage,
the automated evaluation of the constraints and default dependency rules has
not been considered, although that would certainly be useful.

Feature names in expressions should be qualified to avoid name clashes, but
since each expression is associated with a specific feature diagram, the domain
and concept name are unnecessary. To avoid repeating long qualifications, as in
A.B.C.x ∨A.B.C.y, the common qualification may be introduced in front of the
expression, e.g. A.B.C.(x ∨ y).

Constraints A list of constraints associated with a feature diagram is a con-
junction of the expressions it consists of. Thus, for a concept instance to be valid,
all the constraints associated with the feature diagram must evaluate to true.
Obviously, in case of a contradiction among the constraints, it is impossible to
instantiate the concept.

Constraints express mutual exclusions and requirements among features, i.e.
they determine which features cannot appear together and which must appear
together, respectively. A single constraint may express both mutual exclusions
and requirements.

Constraints have numerous equivalent forms, but they should be kept in
the form which is as comprehensible as possible. Bearing this in mind, mutual
2 Such a configurability has been implemented in AmiEddi, a feature modeling editor

(available at [19]), through so-called metamodel editor [21, 22].



exclusions may be expressed by connecting features with xor, while requirements
may be expressed as implications or equivalences, depending on whether the
requirement is bidirectional or not.

As has been said, the main constraints are expressed directly in feature dia-
grams and thus need not be repeated in the information associated with them.
However, sometimes it may be needed to change a feature diagram constraint
to associated one, or vice versa. In a feature diagram, a mutual exclusion is
expressed by alternative features. A requirement is expressed by a variable sub-
feature whose parent is also a variable feature: the subfeature requires its parent
to be included. Also, a requirement may be expressed by or-features: at least
one feature is required from a set of or-features.

Default Dependency Rules A list of default dependency rules associated
with a feature diagram is a disjunction of an implicit (not displayed) true and
the expressions it consists of. The implicit true disjunct in a list of default de-
pendency rules assures that it always evaluates to true.

Default dependency rules determine which features should appear together
by default. Default dependency rules are applied at the end of the process of
concept instantiation if there are variable features left such that no explicit
selection has been made among them. Which of these features will be included
in the concept instance is decided according to the default dependency rules.

2.3 Parameterization in Feature Models

A parameterized name of a concept or feature has the form: p1p2 . . . pn, where for
each i ∈ [1, n] pi is either a parameter or specific string and where exists j ∈ [1, n]
such that pj is a parameter. For each parameter, a set of possible strings that
may be substituted for it has to be defined in its description. Parameters are
introduced in <> brackets to distinguish them from specific strings.

Name parameterization enables to reason more generally about concepts and
features. An example of a parameterized name is Singular Form<i>, where <i>
is a natural number. The specific names corresponding to this parameterized
name are: Singular Form1, Singular Form2, etc.

[<Plural Form>]

<Singular Form>1

<Singular Form>

<Singular Form>2

<Singular Form>

...

Fig. 2. Dealing with plural forms using a parameterized concept.

Name parameterization is the only way to express constraints and default
dependency rules about subfeatures of an open feature because their number



is unknown. Consider the feature diagram in Fig. 2 (ignoring the parameteri-
zations of <Singular Form> and <Plural Form> for the moment). The feature
<Plural Form> is open; further direct variable subfeatures of the form <Singular
Form><i>, where <i> is a natural number, are expected at it. The parame-
terized name <Singular Form><i> is exactly how all these features may be
referred to.

A parameterized concept or feature is a concept or feature whose name is
parameterized. Parameterized features may appear only in feature diagrams of
parameterized concepts; otherwise, the feature model would be inconsistent since
it would define a set of different feature diagrams for a single concept. For the
same reason, parameterized concepts may not be referenced in feature diagrams
of specific (i.e., non-parameterized) concepts.

Figure 2 shows an example of a parameterized concept. The name <Plural
Form> is a plural form of <Singular Form><i>.<Singular Form>. Using a
parameterized concept, we avoided drawing a separate feature diagram for each
concept.

2.4 Representing Cardinality in Feature Models

Parameterized concepts are capable of representing UML style cardinalities rep-
resented by a comma separated list of the minimum..maximum cardinality pairs [7].
This may be achieved by a feature diagram in Fig. 3a with the following con-
straint which will assure the appropriate number of features according to the
specified cardinality:

<n>∨

<i>=1

((max<i>6= ∗ ⇒
<max<i>>−<min<i>>+1∨

<j>=<min<i>>

i∧

k=1

<C><k>) ∧

∧ (max<i>= ∗ ⇒
<min<i>>∧

k=1

<C><k>))

[<Cs>:<min1>..<max1>,...,<min<n>>..<max<n>>]

<C>1

<C> (R)

<C>2

<C> (R)

...
Book

Authors:1..* References:1..*

(a) (b)

Fig. 3. Parameterized concept for representing cardinality (a) and an example
of its application (b).

The parameter <Cs> is the plural form of the parameter <C>. Note that
parameters <min<i>> and <max<i>> are in fact doubly parameterized. This



is to enable the parameterization of the number of minimum..maximum cardi-
nality pairs.

The values allowed for both minimum and maximum cardinalities are natural
numbers. Also, an additional value denoted by an asterisk is allowed for the max-
imum cardinality value meaning “many,” as in [7]. Zero cardinality is achieved by
referencing the concept <Cs>:<min1>..<max1>,. . . ,<min<n>>..<max<n>>
as an optional feature.

This parameterized concept may be applied to any domain by including it
in the feature model of the domain. Next, the set of the singular and plural
forms of concept names corresponding to each other (representing possible val-
ues for <C> and <Cs>, respectively) has to be defined. Obviously, a feature
model must include the concepts singular form concept names refer to. Finally,
specific concept name and a set of minimum..maximum cardinality pairs should
be substituted. An example is shown in Fig. 3b; a book has at least one author,
and it may have zero (modeled by the optionality of References:1..*) or more
references.

2.5 Concept Instantiation

An instance I of the concept C at time t is a configuration of C’s features which
includes the C’s concept node and in which each feature whose parent is included
in I obeys the following conditions:
1. All the mandatory features are included in I.
2. Each variable feature whose binding time is earlier than or equal to t is

included or excluded in I according to the constraints of the feature diagram
and those associated with it. If included, it becomes mandatory for I.

3. The rest of the features, i.e. the variable features whose binding time is later
than t, may be included in I as variable features or excluded according to
the constraints of the feature diagram and those associated with it. The con-
straints (both feature diagram and associated ones) on the included features
may be changed as long as the set of concept instances available at later
instantiation times is preserved or reduced.

4. The constraints associated with C’s feature diagram become associated with
the I’s feature diagram.

A concept instance is represented by a feature diagram derived from the
feature diagram of the concept by showing only the features included in the
concept instance. A concept instance is regarded further as a concept and as
such may be considered for further instantiation at later instantiation times.
During instantiation, a concept reference may appear in a concept instance as
any other feature if it is not replaced by the diagram of the concept it references
prior to instantiation.

3 Other Approaches to Feature Modeling

Feature modeling originates from Software Engineering Institute (SEI), where
it was used in FODA method [3] developed there, which became a part of their



MBSE method. Recently, MBSE has been replaced by PLP approach [8, 9], which
also employ feature modeling. An adapted version of FODA feature modeling is
also a part of FORM method [4].

Since the publishing of FODA in 1990, several approaches have adopted
FODA feature modeling, often in an adapted version [10, 1, 11]. Some work has
been devoted primarily to extending feature modeling as such (with respect to
UML) [12, 13], or even to formalize it [14].

Czarnecki-Eisenecker feature modeling [1] generalized FODA feature model-
ing notation and accepted a more general notion of a feature from ODM approach
in which features are associated with particular domain practitioners and domain
contexts [5], i.e. a feature is any concept instance property important to some of
the stakeholders [1]. Such an understanding of a feature has been adopted also
by FORM [4], a direct ancestor of FODA.

Czarnecki-Eisenecker feature modeling is also more abstract than FODA or
FORM feature modeling. In Czarnecki-Eisenecker feature modeling, relation-
ships between a feature and its subfeatures don’t have any predefined semantics;
the relationship is fully determined by the semantics of subfeatures. FORM fea-
ture modeling defines three types of relationships of a feature to its subfeature:
composed-of, generalization/specialization, and implemented-by. Moreover, each
feature is classified as a capability, operating environment, domain-technology, or
implementation technique feature.3 According to their type, features are placed
into one of the four layers feature diagrams are divided into. On the other
hand, Matthias Riebisch argues against the classification of features according
to FORM and proposes to classify features into functional, interface, and pa-
rameter features [15]. Therefore, it seems that it is better not to enforce such
predefined feature categories in feature modeling.

Concept instantiation with respect to feature binding time (see Sect. 2.5) is
a generalization of concept instantiation as proposed in [1]. Compared to the
set representation proposed in [1], even if the features are qualified as proposed
in Sect. 2, feature diagrams are a more appropriate way to represent concept
instances. Moreover, they enable to represent concept instantiation in time.

The following sections discuss other solutions to referencing concepts, repre-
senting constraints and default dependency rules, and representing cardinalities.

3.1 Concept References

The problem of coping with complex feature diagrams has been recognized al-
ready in [1], where complex diagram are divided into a number of smaller dia-
grams, which then may be referred to in the main diagram by introducing their
roots.

Concept references, introduced by MPDfm feature modeling, are a logical
extension of this idea. MPDfm feature modeling specifies how the information

3 This classification has been proposed already in [3], but since FODA was concerned
with user visible features, it dealt only with (application) capabilities.



associated with the concept applies to its references and how it may be adapted
to the needs of a particular reference.

Concept references enable a concept to reference itself (directly or indirectly).
This enables feature diagrams to be viewed as trees while being in conformance
with the fact that feature diagrams in general are directed graphs.

To refer to a concept or features unambiguously, a common dot conven-
tion is used in MPDfm feature modeling. A similar convention is used in Fea-
tuRSEB [10], though without taking into account domain names, which may lead
to ambiguities when talking about concepts and features from several domains.

3.2 Representing Constraints and Default Dependency Rules

In MPDfm, constraints and default dependency rules are expressed concisely as
logical expressions. Logical expressions are capable of expressing both mutual
exclusions and requirements among features. In fact, a single logical expression
may encompass both types of the constraints. In FODA feature modeling, as
well as in Czarnecki-Eisenecker feature modeling, constraints are expressed by
explicitly stating which feature is mutually exclusive or requires which other
feature.

In [16], constraints are written in an adapted version of Object Constraint
Language (OCL) used in Unified Modeling Language [7]. It is merely a matter
of preference whether to use OCL syntax or traditional mathematical symbols
for logical connectives (e.g., implies vs. ⇒). However, in [16], constraints are also
accompanied by the information to be passed to the developer who instantiates
the concepts that, for example, another feature has to be selected. This signif-
icantly reduces the readability of constraints. Better, such messages could be
generated or a whole constraint could be passed instead.

Incorporating messages to developers significantly reduces the readability of
such constraints. Moreover, such messages to the developer may be generated
or, even better, a whole constraint may be passed instead.

The proposed form of expressing constraints and default dependency rules
may be applied also to the constraints expressed directly by feature diagrams.
This way, a whole feature diagram may be represented as a set of logical expres-
sions. For the purpose of a graphical representation, a set of views of the feature
diagram could be then defined. For each view, the relationships that should be
shown would have to be specified with respect that the feature diagram should
be a tree. The new constraints for the feature diagram could be then calculated
to avoid duplicity (some of the constraints would be expressed in the feature
diagram). In order to distinguish the primary relationships between the features
expressed in a feature diagram from the constraints associated with it, one of
the views could be denoted as primary.

The need to represent feature diagrams in a graphically independent form
has been identified also in [17]. The formalized feature modeling proposed in [14]
actually relinquishes the feature diagrams completely, and with them the primary
relationships between the features, too.



3.3 Representing Cardinalities

In the original Czarnecki-Eisenecker feature modeling, introducing feature car-
dinalities was strongly avoided arguing that since the only semantics of an edge
is whether to assert a feature or not, cardinality would only mean to assert it
several times, which is useless [1, p. 117]. Instead, to model the cardinality as
a feature was recommended. In spite of this, a later work proposes to use the
UML-style cardinalities with features [18]. Also, a generalized form of alterna-
tive and or-features is introduced in which the number of features which may
be included is specified also as a cardinality (which does not contradict to the
original Czarnecki-Eisenecker feature modeling).4

As has been demonstrated in Sect. 2.4, plural forms of the concepts and
cardinality in general can be specified by parameterized concepts without com-
promising the principles of feature modeling. If preferred, UML cardinalities can
be used instead, provided they are defined as a notational extension with respect
to the parameterized concept.

4 A Feature Modeling Metamodel

The domain of feature modeling is understood here as a domain of the tools
that support feature modeling as a central activity in software development.
The feature modeling based methods, such as generative programming, FODA,
FORM, FeatuRSEB, and feature modeling for multi-paradigm design, all have
in common the central role of a feature model from which traceability links
to other models are provided. The variability lies in the notations of feature
modeling employed by different methods. The systems built in the domain would
represent feature modeling CASE tools suitable for individual methods (possibly
groups of methods).

Based on the information presented in the previous sections, a metamodel
of the feature modeling will be proposed in this section. The metamodel will
be expressed using feature modeling itself in order to capture the variability of
feature modeling notations and to describe the core concepts of feature modeling
in a concise way. The purpose of this metamodel is to provide a basis both for
further reasoning on feature modeling and for developing feature modeling tools.
Therefore, the metamodel embraces features that express functionality, too.

The concepts identified in the domain of feature modeling are: feature model,
feature diagram, node, feature, partition, associated information, AI item, AI
value, constraint, default dependency rule, and link. The model also includes
the parameterized concept Plural Form introduced in Sect. 2.3, where <Singular
Form> <i>.<Singular Form> is a reference to one of the following concepts:
Feature Diagram, Node, Feature, Link, Constraint, Default Dependency Rule,
or AI Value. Dynamic binding of Plural Form features is assumed. In the rest

4 These extensions are implemented in Captain Feature (available at [20]), in which
the whole feature modeling notation should be configurable through a metamodel
represented by a feature model [23, 18], but its editing is not possible.



of the concepts, dynamic binding is indicated where applies; otherwise, static
binding is assumed.

4.1 Feature Model and Feature Diagram

A feature model (Fig. 4) represents the model of a domain obtained by the
application of feature modeling. It consists of a set of feature diagrams (Feature
Diagram Set). and it may have a set of links to other modeling artifacts (Link
Set). Feature diagrams in a feature model may be normalized [1] (Normalize), but
this applies only to those feature modeling notations that embrace or-features.

Feature Diagrams Set

Feature Model

DescriptionName

New feature diagram

Delete feature diagramNormalizeLink Set

Links(R)Feature Diagrams(R)

dynamic dynamic

Fig. 4. Feature Model concept.

A feature diagram (Fig. 5) presents a featural description of a concept graph-
ically. An additional constraint that applies to Feature Diagram is that a root
may not be a concept reference:

¬Root.Node.Reference

A feature diagram contains a set of nodes (Node Set) and a set of features
(Feature Set). It may be represented by a directed tree (Tree). In this case, a
feature diagram describes the features of a domain concept represented by its
root node (Root.Node r©). An operation of adding a feature to a feature diagram
represented as a tree (Tree.Add feature) should preserve the tree structure. A
feature diagram may also be considered to be a connected directed graph.

A set of constraints (Constraint Set) and default dependency rules (Default
Dependency Rule Set) may be associated with a feature diagram, which is needed
by some approaches to feature modeling. Also, a feature diagram may have a
set of links to other modeling artifacts (Link Set). A feature diagram may be
normalized (Normalize).

4.2 Node and Feature

Feature diagram nodes (Fig. 6) represent concepts in general sense (as explained
in Sect. 2), which have they own names (Name), and concept reference nodes
(Reference). It may have a set of links to other modeling artifacts (Link Set).
Some approaches to feature modeling allow feature diagram nodes to be marked
as open, which means that new direct features of a node are expected (Openness).



Default Dependency Rule Set

Feature Diagram

Tree

Name

Description

Normalize

Graph

Default Dependency Rules(R)

Nodes(R)

Link Set

Links(R)

Constraint Set

Constraints(R)

Feature Set

Features(R)

Node Set

Root

Node(R)

Add feature

Add feature

Remove feature

Add node

Remove nodedynamic

dynamic
dynamic

dynamic

dynamic

Fig. 5. Feature Diagram concept.

Name

Node

Openness

open closedDescription
Link Set

Links(R)

Reference

Node(R)

dynamic

dynamic

Fig. 6. Node concept.

A feature is a relationship between two nodes (Fig. 7). It describes the vari-
ability of a subfeature (Subfeature) with respect to its superfeature (Superfea-
ture): the subfeature may be mandatory (mandatory), i.e. it must be included
in a concept instance, or it may be optional (optional), i.e. it may be included
in a concept instance.

In some approaches to feature modeling, relationships between nodes are
named (Name) or may have a type specified (Type). Also, a feature may have a
set of links to other modeling artifacts (Link Set).

4.3 Partition

Features originating in one node may be divided into a set of disjunct partitions
(Fig. 8) marked by arcs in feature diagrams. The features in a partition are
presumed to be alternative, i.e. to have xor semantics (as in FODA). Some
approaches (e.g., Czarnecki-Eisenecker notation and MPDfm) employ also or-
features, so the features in a partition may be either alternative or or-features
(Type). Other approaches (e.g. [18]) employ cardinality, which enables to specify
the number of features (maximum and minimum) in a partition that may be



mandatory optional

Feature

Name

Superfeature

[Type]

Link Set

Associated Information(R)Partition(R)

Subfeature

Node(R) Node(R)

Links(R)

dynamic

Fig. 7. Feature concept.

selected (Cardinality). Some approaches to feature modeling allow partitions to
be marked as open (similarly to openness of a node in a feature diagram), which
means that new direct features in a partition are expected (Openness).

oralternative

Partition

Type Cardinality

open

Openness

closedmin max

dynamicdynamic

Fig. 8. Partition concept.

4.4 Associated Information and Related Concepts

Different approaches to feature modeling, and different applications of it, too,
require different information to be associated with features. The concept of as-
sociated information (Fig. 9) captures this demand by a fully configurable set of
items associated information consists of (AI Items r©).

Add item

Associated Information

AI Items(R) Remove item

Fig. 9. Associated Information concept.

An associated information item (Fig. 10a) applicability may depend on the
optionality of a feature with which it is associated (Applicability). There are
two kinds of an associated information item: textually expressed ones (Textual)
and those represented by a value selected from the extensible set of available
values (Selectable). The concept of an associated information value (Fig. 10b)
represents such a value.



AI Item

Textual Selectable

Text AI Values(R) Add valueRemove value

Applicability

common features variable featuresValue

dynamic
AI Value

Name Description

(a) (b)

Fig. 10. AI Item (a) and AI Value (b) concepts.

4.5 Constraint and Default Dependency Rule

Constraints (Fig. 11a) express mutual exclusions and requirements among fea-
tures beside those specified by the feature diagram. They may be specified either
as logical expressions (Logical expression), textually (Textual), or in a FODA-
like form (see Sect. 3.2).

Logical expression FODA-like

Constraint

Textual Logical expression Textual

Deafult dependency rule

(a) (b)

Fig. 11. Constraint (a) and Default Dependency Rule (b) concepts.

Default dependency rules (Fig. 11b) determine which features should appear
together by default in concept instances. They may be specified either as logical
expressions (Logical expression) or textually (Textual).

4.6 Link

A link (Fig. 12) enables to connect a feature model or its parts to its own nodes
and features, or to other models. These models include feature models, in which
case a link may be more specific and point to a feature diagram in that model,
or a node or feature in that diagram. An additional constraint that applies to
Link concept is that a link may not lead to a node and feature simultaneously:

Node ∨Feature

5 Conclusions and Further Research

This paper brings several improvements into feature modeling. Concept instanti-
ation is defined with respect to instantiation time with concept instances repre-
sented by feature diagrams. Parameterization in feature models enables to reason



Link

File Feature Diagram(R) Feature(R)Node(R)

dynamic

Fig. 12. Link concept.

more generally about concepts and features and to express constraints and de-
fault dependency rules about subfeatures of an open feature. Constraints and
default dependency rules are represented by logical expressions. Concept refer-
ences enable to deal with complex feature models. A dot convention enables re-
ferring to concepts and features unambiguously. A parameterized concept which
enables to represent cardinality in feature modeling is introduced.

Other approaches to feature modeling have been evaluated and compared
with feature modeling for multi-paradigm design. Based on this analysis, a fea-
ture modeling metamodel has been proposed. The metamodel shows how the
commonalities and variabilities of the domain of feature modeling may be mod-
eled by feature modeling itself. This metamodel may serve both for further rea-
soning on feature modeling and as a basis for developing feature modeling tools.

Further research topics include enhancing parameterization in feature mod-
eling with respect to binding time/mode and expressing feature models fully in
the form of constraints (as logical expressions) with defined primary constraints
that are to be presented visually (in feature diagrams).

Acknowledgements The work was partially supported by Slovak Science Grant
Agency VEGA, project No. 1/0162/03.

References

[1] Czarnecki, K., Eisenecker, U.W.: Generative Programing: Principles, Techniques,
and Tools. Addison-Wesley (2000)

[2] Coplien, J. O.: Multi-Paradigm Design for C++. Addison-Wesley (1999)
[3] Kang, K.C., et al.: Feature-oriented domain analysis (FODA): A feasibility study.

Technical Report CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, USA (1990).

[4] Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A feature-
oriented reuse method with domain-specific reference architectures. Annals of
Software Engineering 5 (1998) 143–168

[5] Simos, M.A.: Organization domain modeling (ODM): Formalizing the core domain
modeling life cycle. In: Proc. of the 1995 Symposium on Software reusability,
Seattle, Washington, United States, ACM Press (1995) 196–205

[6] Vranić, V.: Feature modeling based transformational analysis in multi-paradigm
design. Submitted to Computers and Informatics (CAI), December 2003.

[7] Object Management Group: OMG unified modeling language specification, ver-
sion 1.5 (2003).

[8] Chastek, G., et al.: Product line analysis: A practical introduction. Technical
Report CMU/SEI-2001-TR-001, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, USA (2001).



[9] Software Engineering Institute, Carnegie Mellon University: A framework for
software product line practice — version 3.0. http://www.sei.cmu.edu/plp/

framework.html. Last accessed in June 2004.
[10] Griss, M.L., et al.: Integrating feature modeling with the RSEB. In Devanbu, P.,

Poulin, J., eds.: Proc. of 5th International Conference on Software Reuse, Vicoria,
B.C., Canada, IEEE Computer Society Press (1998) 76–85

[11] Geyer, L.: Feature modelling using design spaces. In: Proc. of the 1st Ger-
man Product Line Workshop (1. Deutscher Software-Produktlinien Workshop,
DSPL-1), Kaiserslautern, Germany, IESE (2000)

[12] Riebisch, M., et al.: Extending feature diagrams with UML multiplicities. In:
Proc. of the 6th Conference on Integrated Design and Process Technology (IDPT
2002), Pasadena, California, USA, Society for Design and Process Science (2002).

[13] Clauβ, M.: Modeling variability with UML. In: Proc. of Net.ObjectDays 2001,
Young Researchers Workshop on Generative and Component-Based Software En-
gineering, Erfurt, Germany, tranSIT (2001) 226–230

[14] Jia, Y., Gu, Y.: The representation of component semantics: A feature-oriented
approach. In Crnković, I., Larsson, S., Stafford, J., eds.: Proc. of the Workshop on
Component-based Software Engineering: Composing Systems From Components
(a part of 9th IEEE Conference and Workshops on Engineering of Computer-
Based Systems), Lund, Sweden (2002).

[15] Riebisch, M.: Towards a more precise definition of feature models. In M. Riebisch,
J. O. Coplien, D.S., ed.: Modelling Variability for Object-Oriented Product Lines,
Norderstedt, BookOnDemand Publ. Co. (2003) 64–76

[16] Streitferdt, D., et al.: Details of formalized relations in feature models using
OCL. In: Proc. of the 10th IEEE Symposium and Workshops on Engineering
of Computer-Based Systems (ECBS’03), Pasadena, California, USA, IEEE Com-
puter Society (2003) 297–304

[17] Lee, K., et al.: Concepts and guidelines of feature modeling for product line
software engineering. In Gacek, C., ed.: Proc. of 7th International Conference
(ICSR-7). LNCS 2319, Austin, Texas, USA, Springer (2002)

[18] Czarnecki, K., et al.: Generative programming for embedded software: An indus-
trial experience report. In Batory, D., et al., eds.: Generative Programming and
Component Engineering: ACM SIGPLAN/SIGSOFT Conference, GPCE 2002.
LNCS 2487, Pittsburgh, PA, USA (2002) 156—172

[19] Czarnecki, K., Eisenecker, U.W.: Generative programming — methods, tools, and
applications. http://www.generative-programming.org. Last accessed in March
2004.

[20] Captain Feature: Project page. https://sourceforge.net/projects/

captainfeature. Last accessed in March 2004.
[21] Blinn, F.: Entwurf und implementierung eines generators für merkmalmetamod-

elle. Master’s thesis, Fachhochschule Zweibrücken, Fachbereich Informatik (2001)
In German. Available at http://www.informatik.fh-kl.de/~eisenecker (last
accessed in March 2004).

[22] Czarnecki, K., et al.: Generative programing: Methods, techniques, and applica-
tions. Slides and notes of the tutorial given at Net.ObjectDays 2003 (2003)

[23] Bednasch, T.: Konzept und implementierung eines konfigurierbaren metamodells
für die merkmalmodellierung. Master’s thesis, Fachhochschule Kaiserslautern,
Standort Zweibrücken, Fachbereich Informatik (2002) In German. Available at
http://www.informatik.fh-kl.de/~eisenecker (last accessed in March 2004).

http://www.sei.cmu.edu/plp/framework.html�
http://www.sei.cmu.edu/plp/framework.html�
http://www.generative-programming.org�
https://sourceforge.net/projects/captainfeature�
https://sourceforge.net/projects/captainfeature�
http://www.informatik.fh-kl.de/~eisenecker�
http://www.informatik.fh-kl.de/~eisenecker�

	Introduction
	Feature Modeling for Multi-Paradigm Design
	Feature Diagrams
	Constraints and Default Dependency Rules
	Parameterization in Feature Models
	Representing Cardinality in Feature Models
	Concept Instantiation

	Other Approaches to Feature Modeling
	Concept References
	Representing Constraints and Default Dependency Rules
	Representing Cardinalities

	A Feature Modeling Metamodel
	Feature Model and Feature Diagram
	Node and Feature
	Partition
	Associated Information and Related Concepts
	Constraint and Default Dependency Rule
	Link

	Conclusions and Further Research
	References

