
Abstract Layers and Generic Elements as a Basis
for Expressing Multidimensional Software

Knowledge

Valentino Vranić[0000−0001−9044−4593] and Adam Neupauer

Institute of Informatics, Information Systems and Software Engineering
Faculty of Informatics and Information Technologies

Slovak University of Technology in Bratislava
Ilkovičova 2, 84216 Bratislava 4, Slovakia

vranic@stuba.sk

Abstract. Enormous intellectual efforts are being invested into produc-
ing software in its executable form or, more precisely, a form from which
this executable form can be automatically derived, commonly known as
a source form (usually code, but may be a model, too). On the other
hand, it is inherently complex to restore the ideas upon which software
has been built. Moreover, it is usually not possible to produce software
in its source form directly without producing a number of documents,
diagrams, or schemes. All these artifacts, including the program code,
represent software knowledge necessary for maintaining existing software
and for building further systems in a given domain. But these software
knowledge sources are disconnected from each other making it hard to
navigate between them and to devise conclusions based on their relat-
edness, which is essential for their effective use. In this paper, a new
approach to versatile graphical software modeling based on abstract lay-
ers and generic elements and its use in modeling multidimensional soft-
ware knowledge and interrelating its pieces is proposed. The approach is
supported by a prototype tool called InterSKnow, which targets mainly
internal representation. This enabled to evaluate the approach from two
perspectives: the efficiency of searching for software knowledge in soft-
ware models and its comprehension. The results are generally plausible
to the approach proposed here compared to Enterprise Architect as a
representative of traditional, state-of-the-art software modeling tools.

Keywords: software artifacts · layers · UML · domain specific modeling
· knowledge management

1 Introduction

Enormous intellectual efforts are being invested into producing software in its ex-
ecutable form [19,26] or, more precisely, a form from which this executable form
can be automatically derived, commonly known as a source form (usually code,
but may be a model, too [31,33]). On the other hand, it is inherently complex

vranic
Text Box
Valentino Vranić and Adam Neupauer. Abstract Layers and Generic Elements as a Basis for Expressing Multidimensional Software Knowledge. In New Trends in Databases and Information Systems: ADBIS 2019 Short Papers, Workshops BBIGAP, QAUCA, SemBDM, SIMPDA, M2P, MADEISD, and Doctoral Consortium, CCIS 1064, Modelling is going to become Programming, a workshop at 23rd European Conference on Advances in Databases and Information Systems, M2P @ ADBIS 2019, Bled, Slovenia, 2019. Springer, 2019.

The final authenticated version is available online at https://doi.org/10.1007/978-3-030-30278-8_26.



2 V. Vranić, A. Neupauer

to restore the ideas upon which software has been built. Moreover, it is usually
not possible to produce software in its source form directly without producing
a number of documents, diagrams, or schemes. All these artifacts, including the
program code, represent software knowledge necessary for maintaining existing
software and for building further systems in a given domain. But these software
knowledge sources are disconnected from each other making it hard to navigate
between them and to devise conclusions based on their relatedness [22,25], which
is essential for their effective use.

To overcome this, yet another model is necessary: a model that will interrelate
pieces of software knowledge residing in different dimensions. However, this mul-
tidimensional software knowledge is maintained in different tools used to manage
code and all kinds of models, including text descriptions and spreadsheets. Soft-
ware development processes, as they are implemented, typically rely on these
tools. Therefore, in many cases it is not feasible to extract software knowledge
from its original sources and enforce maintaining it further only within a pro-
vided tool no matter how sophisticated it might be. It is hard to expect that such
a supertool would ever support everything that is supported by dedicated tools.
Thus, the purpose of the interrelating model would be to interconnect software
knowledge as it is captured in the corresponding tools and to enable enhancing it
with further details. It should be noted that the interrelating model need not be
populated only manually. Code [5] and runtime information analyzers [1] could
be used to generate parts of it.

The area of knowledge management in software engineering is very broad
with hundreds of approaches [6,23,29,21]. The approach to expressing multidi-
mensional software knowledge by an interrelating model proposed here stems in
software modeling without enforcing any particular format for recording software
knowledge or prescribing its taxonomy (such as the one in an earlier attempt at
establishing a software development knowledge base [10]).

The rest of the paper is structured as follows. Section 2 analyzes what it
would take to support modeling multidimensional software knowledge. Section 3
explains the approach to versatile graphical software modeling based on abstract
layers and generic elements. Section 4 reports on the tool prototype and approach
evaluation. Section 5 discusses related work. Section 6 concludes the paper.

2 Modeling Multidimensional Software Knowledge

UML was envisaged as the ultimate modeling solution applicable not only to
software. As such, it was expected to put an end to the proliferation of differ-
ent notations and establish mutual comprehensibility thus becoming the lingua
franca of (at least) software modeling. However, this did not happen [30]. Other
notations are in use, too, and new notations are being invented. Often, an ad hoc
notation is a handy way to capture and express ideas. This may be at the level of
diagram sketching [32], but taken in a more organized way, such notations may
develop into domain specific modeling languages, which are being increasingly



Abstract Layers and Generic Elements for Multidim. Sw. Knowledge 3

recognized as a more flexible basis for model driven software development than
(UML based) MDA is [9].

In a broader sense, a model is any artifact related to the software system be-
ing developed, including text documents (in different formats) and spreadsheets.
Usually, code is distinguished from models, although it actually may be consid-
ered to be the final, executable model. Different models and code are related in
complicated ways. Leaving this to depend on human memory is not feasible in
the long run. It is not that only the new people joining the development process
must discover the dependencies, but those that once knew the dependencies are
forced to rediscover them once they forget them.

As it has been already pointed out in the introduction, to deal with multi-
dimensional software knowledge, yet another model is needed: an interrelating
model capable of expressing relationships between elements from the same or dif-
ferent models. Consider UML class diagram endless labyrinths. Understanding
these often requires relating distant classes, as displayed in Figure 1.

Fig. 1. Interrelating software knowledge: multidimensional software knowledge meta-
model (the class diagram in the lower left part is a fragment from the EclipseLink 2.0
API UML class diagram2).

Relationships to external models and their elements may be expressed by
using projections of these elements in additional models as in model federa-
tions [14]. In general, a set of such interconnecting models may be used allowing
for multiple levels of interconnecting. Furthermore, the elements of these models
may be not just projections of the elements from the models being interrelated,
2 https://wiki.eclipse.org/EclipseLink/Development/Architecture/EclipseLink/ClassDiagram

https://wiki.eclipse.org/EclipseLink/Development/Architecture/EclipseLink/ClassDiagram


4 V. Vranić, A. Neupauer

but they may be enhancing the information contained in these models. This
might even happen within the elements that are projections by introducing ad-
ditional properties within these elements.

Semantics of the interrelating model may vary significantly. While capturing
structural or static dependencies is very important, interrelating models could
be very useful at expressing time dependencies or, in general, a behavioral or
dynamic view. Providing a particular set of element types and connectors would
be of limited use. For the full flexibility, this interrelating modeling framework
has necessarily to be tailored to the context and this has to happen dynamically
while performing application modeling as in free modeling [15]. Multiple levels
of metamodeling are possible and it seems these are most transparently treated
via the instantiation relationship as in deep modeling [3].

Some of the scenarios in which interrelating software knowledge may help
include:

Change impact estimation. An envisaged specification change could be
tracked through all the levels of models, code, and tests to estimate its com-
plexity and cost, which would be used as a backing of the decision whether
the change is viable.

Exploratory testing. The order of the steps the tester performs in the ex-
ploration test uncovers model and code interrelations. This can help in ex-
ploratory testing automation [13].

Fulfilling regular development tasks. A developer can more easily under-
stand a software system via the interrelating model.

Tracking the intent of a software system to code. While intent is under-
standable in high-level specification and analytical artifacts, it easily gets
lost in models and code [36]. Interrelating these could help and might be
seen as a noninvasive alternative to preserving use cases in code [8].

3 Abstract Layers and Generic Elements

Graphical software modeling serves a broad spectrum of purposes ranging from
conceptualization of ideas to executable models. Apart from UML as a general
purpose modeling notation, there is a growing tendency towards domain spe-
cific modeling languages. Freedom to chose different kinds of visualization some
of which may be even three-dimensional, seems to be essential. What models
actually mean and how they can be used further constitutes another varying
perspective: interpretation. To accommodate this versatility in visualization and
interpretation, a sufficiently general internal representation is necessary.

Pages in a book, sheets of paper in general, blackboards in a classroom,
or even diagrams in contemporary software modeling tools, they all indicate
layering is a way of coping with complexity natural to humans. Making layers
and elements they consist of, along with their relationships, abstract and generic
and allowing them to be visualized and interpreted in different ways might be a
key to the internal representation we look for. From this point of view, it seems
that the main problem of common approaches to graphical software modeling is



Abstract Layers and Generic Elements for Multidim. Sw. Knowledge 5

interweaving visualization, interpretation, and internal representation, or giving
priority to the former two over the internal representation.

Recall Figure 1 from Section 2. Its upper right part depicts the multidimen-
sional software knowledge metamodel, This is, actually, a simplified version of
the metamodel that we implemented in out prototype tool called InterSKnow.
The metamodel enables creating a connection between any two abstract ele-
ments, which means that it is possible to create connections between layers and
elements, including layer–layer and element–layer ones. An element consists of
any number of properties, which may represent anything relevant to it, possibly
organized into sections.

What the metamodel from Figure 1 does not show is that the elements can
be of two kinds: native or proxy. While native elements can also be linked to
other elements and, in some cases, represent them for the purposes of expressing
further relationships between them, as depicted by the object level model in
Figure 1, proxy elements are meant to reflect the original elements. The reflected
elements need not be just elements of other graph based software models: they
can be any software artifacts, such as text documents or spreadsheets.

In general, proxy elements should reflect all content of the original artifact
or, more often, just a part of it. Clicking or otherwise invoking such a proxy
element should open the original artifact for editing in the corresponding tool.
InterSKnow provides this behavior for Microsoft Word and Excel files, but it
does not reflect the content in proxy elements.

4 Tool Support and Evaluation

In order to enable the evaluation of the concept of using abstract layers and
generic elements as a basis for expressing multidimensional software knowledge,
we developed a prototype modeling tool called InterSKnow. The implementation
is based on the Java 8 platform with JavaFX 2.0.

The evaluation embraced two perspectives: the efficiency of searching for soft-
ware knowledge in software models, presented in Section 4.1, and its comprehen-
sion, presented in Section 4.2. Threats to validity are discussed in Section 4.3.

4.1 Efficiency of Searching for Software Knowledge in Software
Models

The efficiency of searching for software knowledge in software models was as-
sessed in the context of solving given tasks. The following set of metrics was
used:

– Number of context switches during the course of solving a task (context
switches cause distraction, which decreases efficiency)

– Number of files opened during the course of solving a task (the necessity to
open many files complicates work making it less efficient)

– Time necessary to solve a task



6 V. Vranić, A. Neupauer

Analogically to Bystrický and Vranić’s interpretation [8] related to source code,
by a context switch in modeling we mean a necessity to look elsewhere than at
the current diagram (within or outside the current model). This breaks a thread
of thought, which negatively affects efficiency.

The experiment involved six participants, each of which had to solve three
tasks, either with the InterSKnow tool or with Enterprise Architect as a represen-
tative of traditional, state-of-the-art software modeling tools. Each participant
was provided with an equal computer configurations. The subject of the experi-
ment was a model of a web based insurance system consisting of three separate
applications called Insurance, Customer, and Notifier, with a common front end.
The tasks performed by the participants were:

– Task 1: Finding and opening the corresponding class to add a new insurance
policy type

– Task 2: Finding the unimplemented components that need to be removed
– Task 3: Finding the description and the class that corresponds to the Cus-

tomer application interface

Table 1 summarizes the results. In a traditional setting, task 1 involved se-
quentially going through the models and their diagrams since the participants
had to find a class whose name wasn’t known to them. The results regarding
the number of files opened only slightly favor InterSKnow because task 1 was fo-
cused on the interconnectedness of artifacts within one software modeling tool.
Nevertheless, InterSKnow saves some effort by enabling to open directly the
source code of a given class. The difference in context switches is significant.
InterSKnow context switches count only for switches between layers, which are
straightforward. Enterprise Architect required opening several models with the
necessity to get back to previous ones since the participants tend to forget the re-
lationships between these models. The time perspective also favors InterSKnow,
which correlates with context switches.

Table 1. Efficiency of searching for software knowledge in software models.

Context switches Files opened Time
Task 1 Task 2 Task 3 Task 1 Task 2 Task 3 Task 1 Task 2 Task 3

InterSKnow
Participant 1 4 3 8 3 2 5 31 29 49
Participant 2 3 5 5 3 3 4 25 34 35
Participant 3 7 3 9 4 2 5 45 33 55

Enterprise Architect
Participant 4 9 19 15 3 2 7 35 123 68
Participant 5 14 15 13 5 2 6 76 91 51
Participant 6 11 25 18 4 2 5 62 200 76

Task 2 results strongly favor InterSKnow in context switches and necessary
time. This was expected, since Enterprise Architect does not express explicitly



Abstract Layers and Generic Elements for Multidim. Sw. Knowledge 7

the relationships between components and packages, nor between packages and
classes, which made the participants systematically open diagram by diagram.

Task 3 was focused on working with external software artifacts. In a tradi-
tional setting, the participants had to open all incriminated files one by one.
With InterSKnow, the files were available directly from the tool via proxy ele-
ments. In many cases, it wasn’t even necessary to click on the proxy element,
since the content reflected by it was sufficient to determine whether the file is
relevant or not.

4.2 Comprehension of Software Knowledge in Software Models

The comprehension of software knowledge in software models was assessed by
verifying how much participants were able to learn from a given software model
within a limited time using a questionnaire that included the following questions:

1. What version of the Spring boot is used by the Insurance application com-
ponents?

2. Which application communicates via RESTS?
3. Which internal application communicates via the AMQP message system?
4. What types of messages are sent by the Notifier application?
5. What infrastructure technology is used in the insurance system (deploymen-

t/configuration)?
6. In what format does the Insurance application communicate via the external

API?

The experiment involved eight participants. Each participant was shown the
questionnaire for twenty seconds. Afterwards, they had three minutes to study
the model. The same models as in the first experiment were used. Finally, the
participants had to fill in the questionnaire they had been shown initially.

As can be observed in Table 2, the results speak in favor of InterSKnow. It
only failed to outperform Enterprise Architect with respect to question 5. This
can probably be attributed to the Enterprise Architect GUI as InterSKnow is
only a prototype.

4.3 Threats to Validity

The fact that, unlike InterSKnow, Enterprise Architect was known to all partici-
pants represents a threat to internal validity. This was an advantage to Enterprise
Architect. The results for an unknown tool would have probably been worse. To
mitigate this, the participant had a brief demonstration of InterSKnow (on a
different model than the one that was used in experiments, of course).

A low number of participants represents a threat to external validity. While
we haven’t had a possibility to increase the number of participants, we’ve taken
care not to engage the same participants in experiments with both InterSKnow
and Enterprise Architect.

The model in Enterprise Architect could have been created with some of
the external software artifacts made available within the model itself using, for



8 V. Vranić, A. Neupauer

Table 2. Comprehension of software knowledge in software models (correct answers
indicated by the check mark).

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6
InterSKnow

Participant 1 X X X
Participant 2 X X X X X
Participant 3 X X
Participant 4 X X X X

Enterprise Architect
Participant 5 X X
Participant 6 X
Participant 7 X X
Participant 8 X X X

example, the UML note element. This can be viewed as another threat to external
validity. However, an extensive use of UML notes to internalize external software
artifacts is not a common practice.

5 Related Work

Melanee, Multilevel Modeling and Domain-Specific LanguageWorkbench [18,2,3],
is a workbench for so-called multilevel or deep modeling. It supports creating
both graphical and textual domain-specific modeling languages clearly separat-
ing their metamodeling levels on the instantiation basis. Differently than Inter-
SKnow, Melanee provides no support of connecting to external software artifacts.
Similarly to InterSKnow, Melanee decouples visualization, interpretation, and
internal representation of the model, but it does so only partially. This involves
employing the concept of layers (sometimes called levels, as in MetaCase [27]),
which can also be observed in other approaches as well [24,11]. However, the
layers are used there only as a means of distinguishing the level of abstraction.
InterSKnow makes no limitations to the interpretation of layers.

Openflexo is an environment that makes possible forming a federation of
software models contained in different tools by providing connectors to these
tools [28,14]. In some cases, it is possible to maintain a live connection, i.e., upon
changing an element or value in the external tool, its proxy element reflects the
change automatically. The idea behind OpenFlexo itself is similar to our idea of
interrelating software artifacts maintained in various external tools. InterSKnow
goes beyond this by employing multiple levels of modeling in the interrelating
model.

EMF Views is a tool that enables combining the information from different
models in one view in the database (SQL) view fashion [4,7]. Some of the views
are live, i.e., changes to proxy elements in a view are reflected in the actual
elements. Again, as with Openflexo, this is similar to our idea of interrelating
software artifacts maintained in various external tools. InterSKnow goes beyond



Abstract Layers and Generic Elements for Multidim. Sw. Knowledge 9

this by making its interrelating model capable of introducing interconnections
and further information not contained within the models being interrelated.

Among commercially available tools, IBM Rational Rhapsody Gateway en-
ables elaborated connection to external software artifacts and their processing,
mainly in the context of requirements engineering [20]. Different models and doc-
uments can be interconnected in this tool. Among supported ones are Microsoft
Word, Microsoft Excel, and PDF formats. All these are transformed into a uni-
fied XML format within the import process that enables specifying what parts
of these documents should be imported. Connected external software artifacts
are available for opening directly from the graphical editor. However, all these
documents are interpreted as sources of requirements, which makes it difficult to
express other intentions. Moreover, Rhapsody Gateway itself does not support
creation of software models, so even UML models have to be created elsewhere
(usually in Rhapsody Modeler). InterSKnow, on the other side, aims at being a
versatile software modeling tool.

6 Conclusions and Further Work

In this paper, a new approach to versatile graphical software modeling based on
abstract layers and generic elements and its use in modeling multidimensional
software knowledge and interrelating its pieces is proposed. The approach is
supported by a prototype tool called InterSKnow, which targets mainly internal
representation. This enabled to evaluate the approach from two perspectives:
the efficiency of searching for software knowledge in software models and its
comprehension. The results are generally plausible to the approach proposed
here compared to Enterprise Architect as a representative of traditional, state-
of-the-art software modeling tools.

The evaluation confirmed the importance of visualization which is largely
underdeveloped in InterSKnow. A layered 3D visualization of software mod-
els [12,16,17] naturally fits the approach proposed in this paper. It could also be
put into virtual reality [35,34]. Both possibilities would enhance opportunities
for improving collaboration in distributed software development.

Acknowledgments

The work reported here was supported by the Scientific Grant Agency of Slovak
Republic (VEGA) under the grant No. VG 1/0759/19 and by the Research &
Development Operational Programme for the project Research of methods for
acquisition, analysis and personalized conveying of information and knowledge,
ITMS 26240220039, co-funded by the ERDF.

References

1. Asadi, F., Di Penta, M., Antoniol, G., Guéhéneuc, Y.G.: A heuristic-based ap-
proach to identify concepts in execution traces. In: Proceedings of 14th Euro-



10 V. Vranić, A. Neupauer

pean Conference on Software Maintenance and Reengineering, CSMR 2010. IEEE,
Madrid, Spain (2010)

2. Atkinson, C., Gerbig, R.: Flexible deep modeling with melanee. In: Proceedings of
Modellierung 2016. LNI, GI, Karlsruhe, Germany (2019)

3. Atkinson, C., Gerbig, R., Kühne, T.: Comparing multi-level modeling approaches.
In: Proceedings of 1st Workshop on Multi-Level Modelling, co-located with 17th
ACM/IEEE International Conference on Model-Driven Engineering Languages and
Systems, MODELS 2014. vol. 1286. CEUR, Valencia, Spain (2014)

4. AtlanMod: EMF Views. https://www.atlanmod.org/emfviews/ (2019)
5. Bavota, G., Laskowska, A., Chulani, I., De Nigro, A., Di Penta, M., Galletti, D.,

Galoppini, R., Gordon, T., Kedziora, P., Lener, I., Torelli, F., Pratola, R., Pukacki,
J., Rebahi, Y., Garcia Villalonga, S.: The market for open source: An intelligent
virtual open source marketplace. In: Proceedings of IEEE Conference on Software
Maintenance, Reengineering and Reverse Engineering, CSMR-WCRE 2014. IEEE,
Antwerp, Belgium (2014)

6. Bjørnson, F.O., Dingsøyr, T.: Knowledge management in software engineering: A
systematic review of studied concepts, findings and research methods used. Infor-
mation and Software Technology 50(11), 1055–1068 (2008)

7. Bruneliere, H., Perez, J.G., Wimmer, M., Cabot, J.: EMF Views: A view mecha-
nism for integrating heterogeneous models. In: Proceedings of 34th International
Conference on Conceptual Modeling, ER 2015. LNCS 9381, Springer, Stockholm,
Sweden (2015)

8. Bystrický, M., Vranić, V.: Preserving use case flows in source code: Approach, con-
text, and challenges. Computer Science and Information Systems Journal (Com-
SIS) 14(2), 423–445 (2017)

9. Dalgarno, M., Fowler, M.: UML vs. domain-specific languages. Methods & Tools
16(2), 2–8 (2008)

10. Devanbu, P., Brachman, R., Selfridge, P.G., Ballard, B.W.: LaSSIE: A knowledge-
based software information system. Communications of the ACM 34(5), 34–49
(1991)

11. Englebert, V., Heymans, P.: Towards more extensible MetaCASE tools. In: Pro-
ceedings of 19th International Conference on Advanced Information Systems En-
gineering, CAiSE 2007. Springer, Trondheim, Norway (2007)

12. Ferenc, M., Polášek, I., Vincúr, J.: Collaborative modeling and visualisation of
software systems using multidimensional UML. In: Proceedings of 5th IEEE Work-
ing Conference on Software Visualization, VISSOFT 2017. IEEE, Shangai, China
(2017)

13. Frajták, K., Bureš, M., Jelínek, I.: Exploratory testing supported by automated
reengineering of model of the system under test. Cluster Computing 20(1), 855–865
(2017)

14. Golra, F.R., Beugnard, A., Dagnat, F., Guerin, S., Guychard, C.: Addressing mod-
ularity for heterogeneous multi-model systems using model federation. In: MOD-
ULARITY Companion 2016, Companion Proceedings of 15th International Con-
ference on Modularity. ACM, Málaga, Spain (2016)

15. Golra, F.R., Beugnard, A., Dagnat, F., Guerin, S., Guychard, C.: Using free mod-
eling as an agile method for developing domain specific modeling languages. In:
Proceedings of ACM/IEEE 19th International Conference on Model Driven Engi-
neering Languages and Systems, MODELS 2016. ACM, Saint-Malo, France (2016)

16. Gregorovič, L., Polášek, I.: Analysis and design of object-oriented software us-
ing multidimensional UML. In: Proceedings of 15th International Conference on
Knowledge Technologies and Data-Driven Business. ACM, Graz, Austria (2015)

https://www.atlanmod.org/emfviews/


Abstract Layers and Generic Elements for Multidim. Sw. Knowledge 11

17. Gregorovič, L., Polášek, I., Sobota, B.: Software model creation with multidimen-
sional UML. In: Proceedings of 9th IFIP WG 8.9 Working Conference, CONFENIS
2015, part of WCC 2015. LNCS 9357, Springer, Daejeon, Korea (2015)

18. Group, S.E.: Melanee project website. University of Mannheim, http://www.
melanee.org (2014)

19. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering:
Trends, techniques and applications. ACM Computing Surveys 45(1), Article No.
11 (2012)

20. IBM: Ibm rational rhapsody gateway. https://www.ibm.com/support/
knowledgecenter/SSB2MU_8.1.5/com.ibm.rhp.oem.pdf.doc/pdf/dassault/
User Guide.pdf (2014)

21. Indumini, U., Vasanthapriyan, S.: Knowledge management in agile software de-
velopment – a literature review. In: Proceedings of 2018 National Information
Technology Conference, NITC 2018. Colombo; Sri Lanka (2018)

22. Keivanloo, I., Forbes, C., Hmood, A., Erfani, M., Neal, C., , Peristerakis, G.,
Rilling, J.: A linked data platform for mining software repositories. In: Proceedings
of 9th IEEEWorking Conference on Mining Software Repositories, MSR ’12. IEEE,
Zurich, Switzerland (2012)

23. Khalil, C., Khalil, S.: Exploring knowledge management in agile software devel-
opment organizations. International Entrepreneurship and Management Journal
p. 15 (2019)

24. de Lara, J., Guerra, E.: Deep meta-modelling with MetaDepth. In: Proceedings of
International Conference on Modelling Techniques and Tools for Computer Perfor-
mance Evaluation, TOOLS 2010: Objects, Models, Components, Patterns. LNCS
6141, Springer, Málaga, Spain (2010)

25. Makedonski, P., Sudau, F., Grabowski, J.: Towards a model-based software mining
infrastructure. ACM SIGSOFT Software Engineering Note 40(1), 1–8 (2015)

26. Matharu, G.S., Mishra, A., Singh, H., Upadhyay, P.: Empirical study of agile soft-
ware development methodologies: A comparative analysis. ACM SIGSOFT Soft-
ware Engineering Note 40(1), 1–6 (2015)

27. MetaCase: MetaCase website. https://www.metacase.com/ (2019)
28. Openflexo: Openflexo project website. https://www.openflexo.org/ (2019)
29. Ouriques, R., Wnuk, K., Gorschek, T., Berntsson Svensson, R.: Knowledge man-

agement strategies and processes in agile software development: A systematic lit-
erature review. International Journal of Software Engineering and Knowledge En-
gineering 29(3), 00153 (2018)

30. Petre, M.: UML in practice. In: Proceedings of 35th International Conference on
Software Engineering, ICSE 2013. IEEE, San Francisco, CA, USA (2010)

31. da Silva, A.R.: Model-driven engineering: A survey supported by the unified con-
ceptual model. Computer Languages, Systems & Structures 43, 139–155 (2015)

32. Socha, D., Tenenberg, J.: Sketching software in the wild. In: Proceedings of 35th In-
ternational Conference on Software Engineering, ICSE 2013. IEEE, San Francisco,
CA, USA (2010)

33. Torchiano, M., Tomassetti, F., Ricca, F., Tiso, A., Reggio, G.: Relevance, benefits,
and problems of software modelling and model driven techniques—a survey in the
italian industry. Journal of Systems and Software 86(8), 2110–2126 (2013)

34. Vincúr, J., Návrat, P., Polášek, I.: VR City: Software analysis in virtual reality
environment. In: IEEE International Conference on Software Quality, Reliability
and Security, QRS 2017. IEEE, Prague, Czech Republic (2017)

http://www.melanee.org
http://www.melanee.org
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.1.5/com.ibm.rhp.oem.pdf.doc/pdf/dassault/User Guide.pdf
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.1.5/com.ibm.rhp.oem.pdf.doc/pdf/dassault/User Guide.pdf
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.1.5/com.ibm.rhp.oem.pdf.doc/pdf/dassault/User Guide.pdf
https://www.metacase.com/
https://www.openflexo.org/


12 V. Vranić, A. Neupauer

35. Vincúr, J., Polášek, I., Návrat, P.: Searching and exploring software repositories
in virtual reality. In: Proceedings of ACM Symposium on Virtual Reality Software
and Technology, VRST 2017. ACM, Gothenburg, Sweden (2017)

36. Vranić, V., Porubän, J., Bystrický, M., Frťala, T., Polášek, I., Nosáľ, M., Lang, J.:
Challenges in preserving intent comprehensibility in software. Acta Polytechnica
Hungarica 12(7), 57–75 (2017)


	Abstract Layers and Generic Elements as a Basis for Expressing Multidimensional Software Knowledge



