
Feature Modeling Based
Multi-Paradigm Design for AspectJ

Valentino Vranić
www.fiit.stuba.sk/˜vranic, vranic@fiit.stuba.sk

Institute of Informatics and Software Engineering

Faculty of Informatics and Information Techologies

Slovak University of Technology

L3S Info-Lunch Presentation — October 1, 2004

www.fiit.stuba.sk/~vranic

Introduction

Software development process: an application
(problem) to solution domain mapping

Software development paradigm: how to express
application domain concepts in terms of solution
domain concepts

Solution domain concepts correspond to
programming language mechanisms

Choosing the appropriate paradigm is an important
issue

Individual solution domain concepts (e.g., a class in
Java) may be regarded as paradigms

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.1/30

Presentation Overview

The concept of paradigm

Feature modeling

Multi-paradigm design with feature modeling
(MPDFM)

Paradigm modeling in MPDFM

Transformational analysis in MPDFM

MPDFM evaluation

Aspect-oriented modeling and MPDFM

Summary and further work

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.2/30

The Concept of Paradigm

The original meaning: example or pattern

Scientific paradigma

Paradigms of programming and software
developmentb

The essence of a software development process
A “popular meaning of the word”: large-scale
paradigmsc

Procedural, logic, functional, object-oriented
paradigm. . .

a
T. S. Kuhn. The Structure of Scientific Revolutions. University of Chicago Press, Chicago, 1970.

b
R. W. Floyd. The paradigms of programming. Communications of the ACM, 22(8), 1979.

c
J. O. Coplien. Multi-Paradigm Design for C++. Addison-Wesley, 1999.

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.3/30

Small-Scale Paradigms

Programming language perspective

Configurations of commonality and variability

Scope, commonality, variability, and relationship
(SCVR) analysisa

An example: the procedure paradigm
Scope: a collection of similar code fragments, each

to be replaced by a call to some new procedure
Commonality: the code common to all fragments
Variability: the “uncommon” code; variabilities are

handled by procedure parameters or custom code

a
J. O. Coplien et al. Commonality and variability in software engineering. IEEE Software, 15(6), Nov. 1998.

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.4/30

Multi-Paradigm Software Development

Two issues:
Making multiple paradigms available:
multi-paradigm languages (e.g., Ledaa)
Choosing an appropriate paradigm for the
problem being solved: multi-paradigm design

Multi-paradigm design methods
Multi-paradigm design method for Ledab

Multi-paradigm design (for C++)c

a
T. A. Budd. Multiparadigm Programming in Leda. Addison-Wesley, 1995.

b
C. D. Knutson et al. Multiparadigm design of a simple relational database. ACM SIGPLAN Notices,

35(12), Dec. 2000.
c

J. O. Coplien. Multi-Paradigm Design for C++. Addison-Wesley, 1999.

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.5/30

Multi-Paradigm Design (MPD)

MPD (for C++)a treats the solution domain in the
same manner as the application domain (SCVR
analysis)

Both application and solution domain models are
expressed mainly by tables

Transformational analysis is preformed as a mapping
between the tables

Code design yields a code skeleton

a
J. O. Coplien. Multi-Paradigm Design for C++. Addison-Wesley, 1999.

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.6/30

Transformational Analysis in MPD

Variability tables (from application domain SCVR analysis)

Commonality Variability Binding Instantiation Language
Mechanism

. . .
. . .

Algorithm
(especially multiple),
as well as (optional)
data structure and
state

Compile
time

Optional Inheritance
Related
operations and
some structure
(positive
variability)

Algorithm, as well as
(optional) data
structure and state

Run time Optional Virtual functions

Parameters of variation Meaning Domain Binding Default
Output medium
Structure, Algorithm

… Database, RCS file,
TTY, UNIX file

Run time UNIX file

Text Editor Variability Analysis for Commonality domain:
TEXT EDITING BUFFERS (Commonality: Behavior and Structure)

Family table (from solution domain SCVR analysis)

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.7/30

Feature Modeling

Captures feature interdependencies and variability

Feature model: a set of feature diagrams plus further
information

Based on the notions of domain, concept, and
feature

Features: common and variable
Concept instances: concept specializations

Different notations being used, such as FODA, ODM,
Czarnecki-Eisenecker, and feature modeling for
multi-paradigm design

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.8/30

Feature Variability
Text Editing Buffer

load file
File

Character Set

cursor position

number of lines

Memory Management

Debugging Code

save file

insert text

remove text

Mandatory features (filled circle ended edges)

Optional features (empty circle ended edges)

OFeature Modeling Based Multi-Paradigm Design for AspectJ – p.9/30

Feature Variability
Text Editing Buffer

load file
File

Character Set

cursor position

number of lines

Memory Management

save file

insert text

remove text
Debugging Code

reading

writing

inserting line

removing line

ASCII UNICODE

File Memory Management

Alternative features (empty arc)

Or-features (filled arc)

OFeature Modeling Based Multi-Paradigm Design for AspectJ – p.9/30

Feature Variability
Text Editing Buffer

load file
File

Character Set

cursor position

number of lines

Memory Management

save file

insert text

remove text
Debugging Code

reading

writing

inserting line

removing line

ASCII UNICODE

File Memory Management

Edges combine with arcs
Mandatory alternative / optional alternative
features
Mandatory or- / optional or-features

OFeature Modeling Based Multi-Paradigm Design for AspectJ – p.9/30

Feature Variability
Text Editing Buffer

load file
File

cursor position

number of lines

Memory Management

save file

... insert text

remove text
Debugging Code

File Memory Management

reading

writing

inserting line

removing line

[Character Set]

ASCII UNICODE

Open features
Further variable subfeatures expected
Denoted by square brackets and, optionally,
ellipsis

OFeature Modeling Based Multi-Paradigm Design for AspectJ – p.9/30

Feature Variability
Text Editing Buffer

load file
File(R)

[Character Set]

cursor position

number of lines

Memory Management(R)

save file

ASCII UNICODE

... insert text

remove text
Debugging Code

File Memory Management

reading

writing

inserting line

removing line

Inclusion of a feature in a concept instance is
stipulated by the inclusion of its parent

Features of any variability type can appear at any
level

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.9/30

Concept References

File(R)

Memory Management(R)

Debugging Code(R)

Text Editing Buffer

load file

[Character Set]

cursor position

number of lines

save file

ASCII UNICODE

... insert text

remove text

Denoted by R© (appears as (R) in diagrams)

Can be expanded as needed

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.10/30

Binding Time/Mode
Text Editing Buffer

load file
File(R)

[Character Set]

cursor position

number of lines

Memory Management(R)

save file

ASCII UNICODE

... insert text

remove text
static

static
Debugging Code

File Memory Management

reading

writing

inserting line

removing line

static

When/how a feature is to be bound

Usual binding times: source, compile, link, load, and
run time

Binding mode: static or dynamic

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.11/30

Further Information in Feature Models

Information associated with concepts and features
Textual information: description, presence
rationale, inclusion rationale, note
Binding time/mode

Constraints and default dependency rules
A constraint example

f1 ⇒f6
C1

[f3]f2f1 f4

f6f5 f7

...

C1

f3f1 f4

f7

C1

f3f2 f4

f6

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.12/30

Concept Instantiation

C1

[f3]f2f1 f4

f6f5 f7

source time run time

compile time

...

C1

[f3]f2 f4

f6f5 f7

run time

compile time

C1

f3f2 f4

f5 f7

run time

source time run timecompile time t

C1

f3f2 f4

f5 f7

...

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.13/30

Parameterization in Feature Models

Parameterized feature and concept names
Constraint: ∀ <i> ∈ N p<i>.h ∨ g

C

g

...
p1

[f]

p2

h
h

Parameterized concepts
[<Plural Form>]

<Singular Form> 1

<Singular Form>

<Singular Form> 2

<Singular Form>

...

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.14/30

MPDFM Activities

Transformational Analysis

Application Domain Feature Modeling Solution Domain Feature Modeling

Code Skeleton Design

solution domain feature model
(paradigm model)

application domain feature model

application to solution domain mapping
(paradigm instances)

code skeleton

application domain related information solution domain related information

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.15/30

Paradigm Modeling in MPDFM

Identification of paradigms
Directly and indirectly usable paradigms
Hierarchy of paradigms

Identification of binding times
A sequence of binding times provided by the
solution domain
Usual binding times: source, compile, link, load,
and run time
An AspectJ example: the method body—run time
binding

First-level paradigm model

Modeling individual paradigms

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.16/30

First-Level Paradigm Model

The solution concept

Consists of directly usable paradigms
Subconcepts of the solution concept
Introduced as concept references (usually in
plural)
Their variability and binding time should be
determined

An example: AspectJ first-level paradigm model

Classes(R) Interfaces(R) Inheritances(R) Aspects(R)

AspectJ Program

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.17/30

Modeling Individual Paradigms

Each paradigm is introduced in a separate feature
diagram

Solution domain concepts
May reference each other

Auxiliary concepts
Concepts referenced by paradigms
But not considered to be paradigms themselves

Binding time (variable features)

Instantiation is modeled by features

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.18/30

Structures and Relationships

Structural paradigms correspond to main constructs
(structures) of the programing language

Relationship paradigms are about the relationships
between programing language structures

An application domain concept node in
transformational analysis

Can match with the root of a structural paradigm
Cannot match with the root of a relationship
paradigm

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.19/30

AspectJ Aspect-Oriented Paradigms

Aspect-oriented programming
Modularization of crosscutting concerns
Useful for debugging, tracing, and synchronization
in general
Application-specific aspects

The aspect paradigm:
A structural paradigm (modularization)
A container of advices, pointcuts, and inter-type
declarations; relationship paradigms (crosscutting
concerns)

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.20/30

Aspect
Aspect

Inter-type Declarations(R)

Advices(R)

Fields
Methods(R)

privileged

Instantiation policy

singleton
per object

per control flow

Classes(R)

Aspects(R)

Interfaces(R)

Name

Inheritances(R)

Pointcuts(R)

final
Scope

Access(R)

abstract

Pointcut(R)

Pointcut(R)

static

whole

below

Access

private protected public package

Constraint:

abstract ∨ final

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.21/30

Advice and Pointcut
Advice

aroundafter

throwingreturning

before

Body

Pointcut(R)

context

Return value type

Type(R)Type(R) Type(R)

Pointcut

context

BodyName

Static join points Dynamic join points

abstractfinal

Access(R)

Join points Join points

compile time run time

Constraints:

1. abstract ∨ Body

2. Access ⇒Name

Type

Class(R)
Interface(R) Aspect(R)

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.22/30

Transformational Analysis in MPDFM

Based on paradigm instantiation over application
domain concepts at source time

One application domain concept considered at a time
1. Determine the structural paradigm of the

application domain concept
2. Determine the corresponding relationship

paradigm for each unmapped relationship in it

A creative process

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.23/30

Paradigm Instantiation in MPDFM

Concept instantiation in MPDFM

Viewed as concept specialization
Concept instances represented by feature
diagrams
Takes into account binding time

A bottom-up instantiation

Inclusion of paradigm nodes stipulated by the
mapping of the application domain concept nodes

Conceptual correspondence
Binding correspondence

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.24/30

Transformational Analysis Example
Text Editing Buffer

load file
File(R)

[Character Set]

cursor position

number of lines

Memory Management(R)

save file

ASCII UNICODE

... insert text

remove text
static

static
Debugging Code

File Memory Management

reading

writing

inserting line

removing line

static

OFeature Modeling Based Multi-Paradigm Design for AspectJ – p.25/30

Transformational Analysis Example
Text Editing Buffer

load file
File(R)

[Character Set]

cursor position

number of lines

Memory Management(R)

save file

ASCII UNICODE

... insert text

remove text
static

static
Debugging Code

static

File Memory Management

reading

writing

inserting line

removing line

OFeature Modeling Based Multi-Paradigm Design for AspectJ – p.25/30

Transformational Analysis Example
Debugging Code

File Memory Management

reading

writing

inserting line

removing line

static

OFeature Modeling Based Multi-Paradigm Design for AspectJ – p.25/30

Transformational Analysis Example

File

reading

writing

Debugging Code

Memory Management

inserting line

removing line

static

OFeature Modeling Based Multi-Paradigm Design for AspectJ – p.25/30

Transformational Analysis Example

Debugging Code.File(R)

Debugging Code

Memory Management

inserting line

removing line

static Debugging Code.File

reading writing

OFeature Modeling Based Multi-Paradigm Design for AspectJ – p.25/30

Transformational Analysis Example

Debugging Code.File(R)

Debugging Code

Memory Management

inserting line

removing line

static Debugging Code.File

reading writing

Advice

aroundafter

throwingreturning

before

Body

Pointcut(R)context

Return value type

Type(R)Type(R) Type(R)

OFeature Modeling Based Multi-Paradigm Design for AspectJ – p.25/30

Transformational Analysis Example

Debugging Code.File(R)

Debugging Code

Memory Management

inserting line

removing line

static Debugging Code.File

reading writing

Advice

aroundafter

throwingreturning

before

Body

Pointcut(R)
context

Return value type

Type(R)Type(R) Type(R)
Debugging Code.File.reading

OFeature Modeling Based Multi-Paradigm Design for AspectJ – p.25/30

Transformational Analysis Example

Debugging Code.File(R)

Debugging Code

Memory Management

inserting line

removing line

static Debugging Code.File

reading writing

Pointcut

context
Name

Static join points Dynamic join points

abstractfinal

Access(R)

Join points Join points

Advice

aroundafter

throwingreturning

before

Body

context

Return value type

Type(R)Type(R) Type(R)
Debugging Code.File.reading

Body

compile time run time

OFeature Modeling Based Multi-Paradigm Design for AspectJ – p.25/30

Transformational Analysis Example

Debugging Code.File(R)

Debugging Code

Memory Management

inserting line

removing line

static Debugging Code.File

reading writing

run timecompile time

Advice

aroundafter

throwingreturning

before

Body

context

Return value type

Type(R)Type(R) Type(R)
Debugging Code.File.reading

Pointcut

context

Body

Static join points Dynamic join points

final

Access(R)

Join points Join points

OFeature Modeling Based Multi-Paradigm Design for AspectJ – p.25/30

Transformational Analysis Example

Debugging Code.File(R)

Debugging Code

Memory Management

inserting line

removing line

static Debugging Code.File

reading writing

Advice

aroundafter

throwingreturning

before

Body

context

Return value type

Type(R)Type(R) Type(R)
Debugging Code.File.reading

Pointcut

context

Body

Dynamic join points

final

Join points

run time

calls to File.read

 File object

 File object

OFeature Modeling Based Multi-Paradigm Design for AspectJ – p.25/30

Transformational Analysis Example

Debugging Code.File(R)

Debugging Code

Memory Management

inserting line

removing line

static Debugging Code.File

reading writing

Advice

before

Body

context

Debugging Code.File.reading

Pointcut

context

Body

Dynamic join points

final

Join points

run time

calls to File.read

 File object

 File object

OFeature Modeling Based Multi-Paradigm Design for AspectJ – p.25/30

Transformational Analysis Example

Debugging Code.File.reading

Advice

before

Body

Pointcut

calls to File.read

context

Body

Dynamic join points

final
 File object

Join points

context

 File object

OFeature Modeling Based Multi-Paradigm Design for AspectJ – p.25/30

Transformational Analysis Example

Debugging Code.File.reading
Debugging Code.File.writing

Advice

after

returning

Body

Advice

before

Body

Pointcut

calls to File.read

context

Body

Dynamic join points

final
 File object

Pointcut

calls to File.write

context

Body
final

Join points

Dynamic join points

Join points

context
context

 File object
 File object

 File object

OFeature Modeling Based Multi-Paradigm Design for AspectJ – p.25/30

Transformational Analysis Example
Aspect

Advices

Instantiation policy

single

Name
Scope

Access

Debugging Code.File.reading

FileDebug

Debugging Code.File.writing

Advice

after

returning

Body

Advice 1
Advice 2

Advice

before

Body

Pointcut

calls to File.read

context

Body

Dynamic join points

final
 File object

package

Pointcut

calls to File.write

context

Body
final

Debugging Code.File

Join points

Dynamic join points

Join points

context
context

 File object
 File object

 File object

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.25/30

Code Skeleton Design

Performed by traversing paradigm instances

Structural paradigm instances first

An example: the file debugging code aspect
aspect FileDC {

before(File f):

target(f) && call(* File.read(..)) {

. . .

}

after(File f):

target(f) && call(* File.write(..)) {

. . .

}

}

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.26/30

Aspect-Oriented Modeling and MPDFM

Aspect-oriented languages differ in essential
aspect-oriented mechanisms

Hard to generalize them for modeling purposes

MPDFM application domain feature models
Abstract from any implementation mechanisms
Independent of a solution domain feature model

AspectJ paradigm model enables to identify aspects
early in the design

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.27/30

Summary (1)

Multi-paradigm design with feature modeling
(MPDFM):

Both application and solution domain represented
as feature models
Transformational analysis based fully on feature
modeling

MPDFM for AspectJ
AspectJ paradigm model
Demonstrated in the text editing buffer
transformational analysis
Successfully applied to the domain of feature
modeling

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.28/30

Summary (2)

Reuse of application and solution domain feature
models

Improvements of feature modeling:
Concept instantiation with respect to instantiation
time
Parameterization in feature models
Constraints and default dependency rules as
logical expressions
Concept references
A dot convention to enable referring to concepts
and features unambiguously
A parameterized concept for representing
cardinality in feature modeling

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.29/30

Further Work

Partial feature model reuse
Overlapping domains
Generalization of similar concepts from different
domains

MPDFM specialization to solution domains other than
programming languages

Feature Modeling Based Multi-Paradigm Design for AspectJ – p.30/30

	Introduction
	Presentation Overview
	The Concept of Paradigm
	Small-Scale Paradigms
	Multi-Paradigm Software Development
	Multi-Paradigm Design (MPD)
	Transformational Analysis in MPD
	Feature Modeling
	Feature Variability
	Feature Variability
	Feature Variability
	Feature Variability
	Feature Variability

	Concept References
	Binding Time/Mode
	Further Information in Feature Models
	Concept Instantiation
	Parameterization in Feature Models
	MPDfm Activities
	Paradigm Modeling in MPDfm
	First-Level Paradigm Model
	Modeling Individual Paradigms
	Structures and Relationships
	AspectJ Aspect-Oriented Paradigms
	Aspect
	Advice and Pointcut
	Transformational Analysis in MPDfm
	Paradigm Instantiation in MPDfm
	Transformational Analysis Example
	Transformational Analysis Example
	Transformational Analysis Example
	Transformational Analysis Example
	Transformational Analysis Example
	Transformational Analysis Example
	Transformational Analysis Example
	Transformational Analysis Example
	Transformational Analysis Example
	Transformational Analysis Example
	Transformational Analysis Example
	Transformational Analysis Example
	Transformational Analysis Example
	Transformational Analysis Example

	Code Skeleton Design
	Aspect-Oriented Modeling and MPDfm
	Summary (1)
	Summary (2)
	Further Work

