Dirganizmiensl peierm frss peen lapeage
Arehitert Cotroks Prodect - csrabliskes an
srchibecs rele

Architeet Al Dplemests - dabceares o thar
eole making it sl im e ooy

T P - furries psdins: bow
the anchitecs collaboration with develnpers
may b reimed.

[va——.
i
et Theaseends i
i ebivioss of aspeos
-
P et Lo £
e

s v
i Y
N et g ek

| et upen aemied el i
opect)

Dividing peogple i indzpenden:
twarmsand assigning fhrm
asftware modules e by developad
directhymay be easlerwitk
syTmeIric 40P [peer use cases)

Pk el b Bk ke 4,

o ap |smngn'tam | |ma:|| | |n;nprruu|

mﬂcdh'enmqlng o]
e e *
ofche yrgasisation, Sacalfica O Parscn

inlecimg rverreg drpendenics
(s cane ExXlermsaon |
Aspasts.

brat e el oo B
wheae coles ffsdbythe o] By creaning groups with similar
I !

ma; it RLG [
mcee modular e the developmenc
bogomes casier
» Commarsli propis «-»onie

» Degarsaztiond pansres md mee-arierred
prograrereteg o1 cappon ach e

 wrpRa o] P s s e desely

= Obgatrtationd pallzres refceed by the ciaieinnl
e are el emndid s for fither eminatia

Gy i oo o e doe
drnpe pao gl e e

Christopher Alesander

Thhe Timeless Wiy of Bnilding
Context
A Pattern Lamanage
Independent Regions
House Cluseer
House for 2 Small Family
Aleaves
Gaogh's Ly wesapar
wapE e
ey
P

Informatics 2019

Synergy of Organizational
Patterns and Aspect-Oriented
Programming

Peter Berta and Valentino Vranié

Institute of Informatics, Information Systems,
and Software Engineering

ce.. 21U
ce.o FHT

vranic@stuba.sk fiit.sk/~vranic

20/11/2.019

«interface»

Subject —
attach(observer: Observer) ~ «(IDnbz e?vceer»
detach(observer: Observer)
notify() update()

P a
| |
| |

Subject1 Observer1

state < state
+getState() +update()
+setState()

«interface»

Subject —
attach(observer: Observer) - «gbze?vc:;»
detach(observer: Observer)
notify() update()

r i
| |
! I
Subject1 Observer1
state state
+getState() +update()
+setState()

observing objects should be notified of the change
in the state of the subject of their observation,

But they should be attachable to the subject
without having to modify it

The Scrum Team consists of a Product Owner, the
Development Team, and a Scrum Master. Scrum
Teams are self-organizing and cross-functional. Self-
organizing teams choose how best to accomplish their
work, rather than being directed by others outside the
team. Cross-functional teams have all competencies
needed to accomplish the work without depending on
others not part of the team. The team model in Scrum
is designed to optimize flexibility, creativity, and
productivity. The Scrum Team has proven itself to be
increasingly eftective for all the earlier stated uses, and
any complex work.

]J. Sutherland and K. Schwaber. Scrum Guides. 2017.

ORGANIZATIONAL
Developer Controls Process PATTERN

\

» But the work needs to be organized.

People don't like being ordered what to do,

Make the developers as a team decide
how to organize development.

The Scrum Team consists of a Product Owner, the
Development Team, and a Scrum Master. Scrum
Teams are self-organizing and cross-functional. Self-
organizing teams choose how best to accomplish their
work, rather than being directed by others outside the
team. Cross-functional teams have all competencies

A conflict of
contradicting forces

ORGANIZATIONAL
Developer Controls Process PATTERN

People don't like being ordered what to do,

But the work needs to be organized.

Make the developers as a team decide

how to organize development.

The Scrum Team consists of a Product Owner, the
Development Team, and a Scrum Master. Scrum
Teams are self-organizing and cross-functional. Self-
organizing teams choose how best to accomplish their
work, rather than being directed by others outside the
team. Cross-functional teams have all competencies
needed to accomplish the work without depending on
others not part of the team. The team model in Scrum
is designed to optimize flexibility, creativity, and
productivity. The Scrum Team has proven itself to be
increasingly eftective for all the earlier stated uses, and
any complex work.

]J. Sutherland and K. Schwaber. Scrum Guides. 2017.

team. Cross-functional teams have all competencies
needed to accomplish the work without depending on
others not part of the team. The team model in Scrum
is designed to optimize flexibility, creativity, and
productivity. The Scrum Team has proven itself to be
increasingly effective for all the earlier stated uses, and
any complex work.

J. Sutherland and K. Schwaber. Scrum Guides. 2017.

Architect Also Implements

Architects need to focus on the overall structure,

But they should not loose contact with the devlopment reality.

Let the (software) architect participate
in actual programming.

Community of Trust

People are naturally cautious and suspicious,

which is often enforced by rules and practices,
but for to really do the work, they need to trust
each other.

Those "in charge" should make obvious they
trust others by giving up the watch-over
activities and letting people decide about their
own work. Good and sincere communication is
essential to overcoming fear.

PATTERN LANGUAGE

J. Sutherland, J. Coplien et al. Scrum as Organizational Patterns. Gertrud&Cope, 2011.

Organizational patterns form pattern languages

Architect Controls Product — establishes an
architect role

Architect Also Implements — elaborates on that
role making it also implement (develop)

Developing In Pairs — further precises how
the architect collaboration with developers
may be realized

Organizational patterns form pattern languages

Architect Controls Product — establishes an
architect role

Architect Also Implements — elaborates on that
role making it also implement (develop)

Developing In Pairs — further precises how
the architect collaboration with developers
may be realized

Conway's Law

Any organization that designs a system
(defined broadly) will produce a design
whose structure is a copy of the
organization's communication structure.

How organizational patterns correspond
to particular programming paradigms?

=% Organizational Patterns in
Aspect-Oriented Programming (AOP)

Conway's Law

There is a need for a system to follow a particular
architecture

But its structure 1s constrained by the structure

of the organization that produces the system

Adapt the organizational structure to the
needs of the system architecture

/@Cd an O@
Customer\CPlaCe an Order

Customer

Place an Order

Cancel an Order

@ce an OrD

— — — —
— — —

@cel an O@
0

— — — —

~ ~
\ Cancel an Order J

—
T e — — — w—

OrderManager

—
— ——

C Place an Order)
OrderManager Product
orderProduct)

cancelOrder()

@ce an OrD Cancel an Order
o

0
_Ll o
{_ Place an Order :) (_ CancelanOrder >
OrderManager Product OrderManager Product
orderProduct) cancelOrder()
OrderManager

orderProduct()
cancelOrder()

Symmetric aspect-oriented modularization

Place an Order _<<include>> Search Products

N

Customer <<extFnd>>
|

Modify the F{estoc@

UC Place an Order
Basic Flow: Place an Order

1. Customer selects to place an order.

2. UC Search Products is being activated.

3. Customer confirms the product selection and adjusts its quantity.
4. If the product is available, System includes it in the order.

5. Customer continues in ordering further products.

6. Customer chooses the payment method, enters the payment data,
and confirms the order.

7. Customer can cancel ordering at any time.

8. The use case ends.

Extension points:
» Checking Product Availability: Step 4

UC Place an Order
Basic Flow: Place an Order

1. Customer selects to place an order.

. h is bei i : <<include>
2. UC Search Products is being activated . ‘ ‘ ' Place an Order) —=!nclude>> Search Products
3. Customer confirms the product selection and adjusts its quantity.

4. If the product is available, System includes it in the order. /:\

Customer <<extlland>>

5. Customer continues in ordering further products.

6. Customer chooses the payment method, enters the payment data,
and confirms the order. I
7. Customer can cancel ordering at any time. !

.Th ds.
8. The use case ends Modify the Restock Plan

Extension points:
« Checking Product Availability: Step 4

UC Modify the Restock Plan
Alternate Flow: Modify the Restock Plan

After the Checking Product Availability extension point of the Place an
Order use case:

1. System checks the available quantity of the product being ordered.
2. If the quantity is below the limit, System adds the quantity under
demand to the restock plan.

3. The flow continues with the step that follows the triggering
extension point.

public class Ordering {
;ublic void order() {
new ProductSearch().search(product);
1f (productAvailable(product)) {

1 else...

public class Ordering {
.[:-:-ublic void order() {
new ProductSearch().search(product);
;f:(productf\vaiIablc(product)) {

}else...

}

public aspect RestockPlan {

=3

he base code is

blivious of aspects

void around(Product product):
call(* Ordering.productAvailable(..) && args(tovar) {

// increase the quantity in the restock plan

Asymmetric aspect-oriented modularization

(Aspect])

ck.calc™(..)); | o ___

_ty can be Divide and Conquer
developers |
|
\V4
Form Follows Function
inI.ISIleSS Shaping Circulation Realms
)
|
|
€ams v
by the ‘_ Hallway Chatter
VeIOped Organizational Style
m, too pattern language

AOP provid
decoupling

Conway's Law ‘_ modules de

of the orgai
including r
(use case ex

By creating grc

activities and e

AND (Mmoo r 11co .

directly may be easier with
symmetric AOP (peer use cases)

Few Roles :
vide and Conauer AOP provides for a greater level of
' J/ decoupling between the software

Conway's Law | e Modules developed by different parts
of the organization,

.<__

- Follows Function including reversing dependencies
' (use case extension)
Iping Circulation Realms

AV
Hallway Chatter

By creating groups with similar

Dividing people into independent
teams and assigning them
software modules to be developed
directly may be easier with
symmetric AOP (peer use cases)

Sivide and Conauer AOP provides for a greater leve

| deconnlino hetrween the coftwa

il g S © Ratuiniab gl dile)

including reversing dependencies

\V4
Form Follows Function

(use case extension)

Shaping Circulation Realms

v
== | Hallway Chatter . . .
By creating groups with similar
Organizational Style activities and employing symmetric
pattern language

AOP (peer use cases), code becomes
more modular and the development
becomes easier

pointcut calculations(): call(* Stock.calc™(..));

Much of pointcut fragility can be
avoided by encouraging
communication among developers

Aspects are about obliviousness,
but the developers or teams

whose code 1s atfected by the @ | Hallway Chatter

aspects others have developed
may be oblivious of them, too

Divide and Conquer

v

Conway's Law

|
!
A4

Form Follows Function

v

Shaping Circulation Realms

\V4

Organizational Style
pattern language

Project Management pattern language

: Size the Schedule :

—
—
—
—
—
. —
—

— — — — — — — — e —]

<== Voo oty
Surrogate Customer Work Split Team per Task
\V4

Sacrifice One Person

> Conway's law: people <-> code

> Organizational patterns and aspect-oriented
programming can support each other

> 9 organizational patterns examined more closely

> Organizational patterns referred by the examined
ones are natural candidates for further examination

> Currently examining organizational patterns close to
design patterns (People and Code pattern language)

