Synergy of Organizational Patterns and
Aspect-Oriented Programming

1*' Peter Berta
Institute of Informatics, Information Systems and Software Engineering, Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava
Slovakia
pepoberta@ gmail.com

2™ Valentino Vranié
Institute of Informatics, Information Systems and Software Engineering, Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava
Slovakia
vranic @stuba.sk

Abstract—By observing Conway’s law, which explains how
organizing people directly affects the code they produce, and
by taking into account the specifics of different programming
paradigms, a lot can be done to improve the software devel-
opment process. We analyzed organizational patterns of agile
software development from the perspective of aspect-oriented
programming, whose aim is to improve the separation of concerns
in code, which, in turn, allows for better separation of tasks
performed by people. We find aspect-oriented programming to
be highly related to at least nine out of more than a hundred
of organizational patterns in Coplien and Harrison’s catalog,
namely: Work Split, Team per Task, Sacrifice One Person,
Divide and Conquer, Conway’s Law, Form Follows Function,
Shaping Circulation Realms, and Hallway Chatter. Aspect-
oriented programming can support organizational patterns in
division of labor, treating distractions, and increasing decoupling
between the software modules developed by different parts of the
organization. On the other hand, organizational patterns can help
mitigate pointcut fragility and aspect obliviousness in general.

Index Terms—modularization, asymmetric aspect-oriented
programming, symmetric aspect-oriented programming, organi-
zational patterns, Conway’s law, use cases, people, agile software
development

I. INTRODUCTION

Conway’s law reveals a direct connection between people
and code. It states that organizations which design systems are
constrained to produce designs which are copies of the com-
munication structures of these organizations [1]. Consequently,
an organization that develops a software system should be
structured the way that this software system is desired to be
structured.

To structure means to separate components and interlink
them in an organized way. This is driven by a human need to
act separately. Programming paradigms have their limitations
in what can be separated. For example, in Java, a method can’t
be defined outside a class and then made a part of it. But using
an aspect-oriented extension to Java called Aspect], this can
be achieved.

Good ways of structuring software development organiza-
tions have been documented as organizational patterns [2]. As
with other software patterns and patterns in general, they deal
with balancing contradicting forces. For example, (software)
architects need to focus on the overall structure, but they
should not lose contact with the development reality. The Ar-
chitect also Implements pattern puts these forces into a balance
by letting the architect participate in actual programming [2].

In this paper, we analyze what organizational patterns are
particularly suitable for aspect-oriented programming and vice
versa. For this, we apply scientific reasoning to identify
analogies between aspect-oriented programming techniques
and organizational patterns. This analysis might be useful to
those who would like to apply aspect-oriented programming
and good organizational practices along. Section II briefly
explains aspect-oriented programming. Section III explains
how we approached identifying suitable organizational pat-
terns. Section IV presents the project management patterns and
their relationship to aspect-oriented programming. Section V
presents the organizational style patterns and their relationship
to aspect-oriented programming. Section VI discusses related
work. Section VII concludes the paper.

II. ASPECT-ORIENTED PROGRAMMING

At the peak of the popularity of aspect-oriented pro-
gramming, there were dozens if not hundreds of aspect-
oriented programming languages available. Given the nature of
aspect-oriented programming, they mostly represented aspect-
oriented extensions to established programming languages.
Consequently, there were many variants and classifications of
aspect-oriented programming. Among these, a particularly im-
portant distinction is whether aspects are perceived as special
modules that affect the base modules or the whole design
is built out of aspects. The former is known as asymmetric
aspect-oriented programming, while the latter is being denoted
as symmetric aspect-oriented programming [3].

Although originally related only to HyperJ [4], an aban-
doned IBM’s prototype aspect-oriented programming lan-
guage, symmetric aspect-oriented programming features can
be observed in programming languages not explicitly de-
noted as aspect-oriented, such as Scala (traits), Ruby (open
classes), and JavaScript (prototypes) [5]. Furthermore, sym-
metric aspect-oriented programming can be emulated in As-
pect] [5], the reference asymmetric aspect-oriented program-
ming language. It is worth noting that peer use cases (use cases
with no dependencies between them) essentially represent
symmetric aspect-oriented modularization [5]. Consider the
use case diagram depicted in Figure 1. Place an Order and
Cancel an Order are two peer use cases. As can be seen in
Figure 2, the realization of these use cases is based around
the same classes, but seen differently from the perspective—
or aspect—of each use case.

Cancel an Order
<< >
Place an Order) — — include>> Search Products

I <<extend>>
|

Customer |

Modify the Restock Plan

Fig. 1. Use cases as aspects.

The extend relationship represents an instance of asym-
metric aspect-oriented modularization, as observed by Jacob-
son [6], [7]. In the use case diagram depicted in Figure 2, the
Modify the Restock Plan use case affects the Place an Order
use case with the latter not being aware of this. Contrast this
to the include relationship, in which Place an Order explicitly
invokes Search Products. This is more evident in the actual
use cases:

UC Place an Order
Basic Flow: Place an Order

1. Customer selects to place an order.

2. UC Search Products is being activated.

3. Customer confirms the product selection and adjusts its
quantity.

4. If the product is available, System includes it in the
order.

5. Customer continues in ordering further products.

6. Customer chooses the payment method, enters the
payment data, and confirms the order.

7. Customer can cancel ordering at any time.

8. The use case ends.

Extension points:

Checking Product Availability: Step 4

UC Modify the Restock Plan

Alternate Flow: Modify the Restock Plan

After the Checking Product Availability extension point in
the Place an Order use case:

1. System checks the available quantity of the product
being ordered.

2. If the quantity is below the limit, System adds the

quantity under demand to the restock plan.
3. The flow continues with the step that follows the
triggering extension point.

In Aspect], the extend relationship can be preserved by the
following aspect, which enforces restocking the plan instead
of having to call this functionality explicitly from the Ordering
class:

public aspect RestockPlan {

void around(Product product):
call(x+ Ordering.productAvailable(..) &&
args(product) {
... // increase the product quantity in the restock plan

}
}

Speaking more generally about Aspect), which is the most
elaborated representative of asymmetric aspect programming,
we may say that aspects modify program execution in join
points, such as method call or execution, constructor call or
execution, or field (attribute) access. Join points are determined
by pointcuts, which can be seen as declaratively specified sets
of join points. Modifications are expressed as so-called advice.
A piece of advice is the code executed before, after, or around
(instead of) a join point. Aspects can add new elements and
inheritance relationships to classes using so-called inter-type
declarations, which is a way to emulate symmetric aspect-
oriented programming in Aspect] [5].

III. IDENTIFYING ORGANIZATIONAL PATTERNS RELATED
TO ASPECT-ORIENTED PROGRAMMING

In identifying organizational patterns suitable for aspect-
oriented programming, we focused on Coplien and Harrison’s
comprehensive catalog [2], which includes over a hundred
patterns forming four interlinked pattern languages. This cat-
alog might be denoted as a culmination of the work that
can be traced back to at least 1994 [8]-[10]. Furthermore,
Sutherland, Coplien, et al. rephrased Scrum into organizational
patterns [11]. All the while, Ambler talks about process
patterns [12], and some other authors took the route of
warning about bad organizational practices expressing them
as antipatterns [13]-[15] (a unifying antipattern catalog has
been reported [16]).

In the following two sections, we present the organizational
patterns from Coplien and Harrison’s catalog we found to
be related to aspect-oriented programming. However, we do
not claim there are no other organizational pattern from
this catalog or in general to be related to aspect-oriented
programming.

IV. PROJECT MANAGEMENT PATTERNS

In the Project Management pattern language, we identified
four patterns related to aspect-oriented programming: Work
Split, Team Per Task, Sacrifice One Person, and Surrogate
Customer. Figure 3 depicts their position within this pattern
language. The Size the Schedule pattern is introduced as the

Place an Order

P -
C Place an Order)
- ~

Cancel an Order

- ~
N Cancel an Order)
- ~

OrderManager
orderProduct)

Product

OrderManager
cancelOrder()

Product

Fig. 2. Realization of peer use cases in the symmetric aspect-oriented way.

root of the Project Management pattern language despite it
wasn’t among the patterns we identified as being related to
aspect-oriented programming. The edges depict the order of
the application as proposed by Coplien and Harrison [2].
Dashed edges mean that the order is indirect, i.e., there are
other patterns in between.

Surrogate Customer | | Work Split | |Team perTask|

‘ Sacrifice One Person |

Fig. 3. The patterns related to aspect-oriented programming within the Project
Management pattern language.

Each of the following sections treats one organizational
pattern. It first brings its brief description based on Coplien
and Harrison’s catalog [2]. Subsequently, the relationship to
aspect-oriented programming is explained.

A. Work Split

During the software development process, big tasks can
make it seem that no progress is being made. To make the
progress visible, the team should split the task at hand into
two parts: the urgent part and deferred part. By focusing on
the urgent part, the tasks will get finished and progress will
be made, relieving the team from the feeling of being stuck.
This is the Work Split pattern.

However, once the team gets onto the deferred part, it may
become necessary to adapt the urgent part. Consider a complex
use case with several alternative flows or a use case extended
by one or more use cases. Obviously, the basic flow of this
use case would be an urgent part, while alternative flows and
extension use cases would be deferred. In effect, alternative
flows are internal extensions, so in both cases asymmetric
aspect-oriented programming can be used as presented in
Section II.

B. Team per Task

A crisis occurring during the software development process
needs to be handled. To ensure that progress will be made and
issues solved, a subteam is created to solve the crisis, allowing

the main team to keep working on the main line. This is the
Team per Task pattern.

Dividing large development teams into smaller, dedicated
teams, when done correctly, is beneficial for the entire software
development process. Developers within a dedicated team can
fully focus on the task assigned to them. They do not need
to draw their attention to other problems that are not theirs to
solve. To fully exploit the benefits of such division of labor,
the dedicated teams can utilize aspect-oriented programming
to keep the implementation of the tasks less coupled. Conse-
quently, they will interfere with each other to a lesser extent
and will be able to make progress independently.

C. Sacrifice One Person

The Sacrifice One Person pattern resolves a similar situation
as the Team per Task pattern (Section IV-B). The main team
can work on the assigned task, while one person is working
on several minor distractions. This one person can handle the
distractions using aspect-oriented programming to keep the
main team free of having to adapt their implementation in
order to incorporate the implementation of the distractions. In-
stead, with asymmetric aspect-oriented programming, the code
resulting from the distractions can affect the corresponding
join points in the code resulting from the main task.

D. Surrogate Customer

When a software development team needs to make a de-
cision about certain requirements, and the customer is not
available, a surrogate customer role may be created. It is
assigned to one member of the software development team,
who acts and thinks like a customer. This is the Surrogate
Customer pattern.

Surrogate Customer role resembles the Cuckoo’s Egg
aspect-oriented design pattern [17]. With the Cuckoo’s Egg
pattern, a given object can be replaced by another object,
which usually exhibits a (slightly) different behavior. The
surrogate customer role can be seen as this new object that
is replacing the old object, which, in turn, corresponds to the
missing or dysfunctional customer. This is as if aspect-oriented
design is applied to organizing people.

V. ORGANIZATIONAL STYLE PATTERNS

In the Organizational Style pattern language, we identified
five more patterns related to aspect-oriented programming:

Divide And Conquer, Conway’s Law, Form Follows Function,
Hallway Chatter, and Shaping Circulation Realms. Figure 4
depicts their position within this pattern language. As with the
Project Management language treated in the previous section,
the root of the Organizational Style pattern language, the
Few Roles pattern, is introduced despite it wasn’t among the
patterns we identified as being related to aspect-oriented pro-
gramming. Again, the edges depict the order of the application
as proposed by Coplien and Harrison [2], while dashed edges
mean that the order is indirect, i.e., there are other patterns in
between.

———— e ——— ——

| Few Roles |

I____\l—/ _____

| Divide and Conquer |

I
V

| Form Follows Function |

\V/

| Shaping Circulation Realms |

Hallway Chatter

Fig. 4. The patterns related to aspect-oriented programming within the
Organizational Style pattern language.

As with the Project Management pattern language, each of
the following sections treats one organizational pattern. It first
brings its brief description based on Coplien and Harrison’s
catalog [2]. Subsequently, the relationship to aspect-oriented
programming is explained.

A. Divide and Conquer

Large organizations are hard to maintain and lead. Assign-
ing tasks or communicating requirements among sizable teams
is difficult. To make it easier, people should be divided into
teams based on their roles. This is the Divide and Conquer
pattern.

Dividing people into independent teams and assigning them
software modules to be developed directly may be easier with
symmetric aspect-oriented programming. This is appropriate
for dealing with peer use cases (recall Section II). As with the
Team per Task pattern (recall Section IV-B), the teams will
interfere with each other to a lesser extent and will be able to
make progress independently.

B. Conway’s Law

As has been said in the introduction, Conway’s law states
that organizations which design systems are constrained to
produce designs which are copies of the communication struc-
tures of these organizations [1]. Consequently, an organization
that develops a software system should be structured the way
that this software system is desired to be structured. This can

be perceived as an organizational pattern: the Conway’s Law
pattern.

This is a general pattern and, in general, aspect-oriented pro-
gramming can help in achieving a greater level of decoupling
between the software modules developed by different parts
of the organization. This includes reversing dependencies if
necessary: recall the implementation of the extend relationship
between use cases presented in Section II).

C. Form Follows Function

The Form Follows Function pattern recommends grouping
together roles that are similar, manipulate similar artifacts, or
operate within the same domain.

One of the main goals of aspect-oriented programming is
to untangle source code and make it more comprehensible.
Form Follows Function also focuses on grouping similar roles
and creating a system from disarranged structure. By creat-
ing groups with similar activities and employing symmetric
aspect-oriented programming similarly to the implementation
of peer use cases mentioned in Section II, code gains certain
level of structure or modularity, and the development process
becomes easier to maintain.

D. Shaping Circulation Realms

Communication is crucial for organizations. While this is
not specific to software development, the collaborative nature
of software development tends to make the importance of com-
munication more visible. A manager cannot expect commu-
nication to be spontaneous, but rather should encourage it by
creating structures that make it effortless. This is the Shaping
Circulation Realms pattern. By establishing communication
structures, it serves as a basis for other patterns.

Pointcut fragility is a long-known issue in aspect-oriented
programming [18]. It is caused by the changes in identifier
names and by the context in which they occur, such as
moving a method to a different class or a class to a different
package [18]. For example, this pointcut captures all the calls
to methods provided by the Stock class whose name begins
with calc:

pointcut calculations(): call(x Stock.calc:(..));

Calls to the methods such as calculateRevenues() or
calculateDifference(). The pointcut is robust enough to capture
the calls to the calculating methods regardless of their argu-
ment list. It would even survive a slight change in the naming
policy such as that calculating method names begin with calc
or cal. However, if this becomes compute, the pointcut would
break, i.e., fail to capture what it was it intended to.
Existing strategies to decreasing pointcut fragility focus on
improving the way they are expressed by, for example, using
sufficiently general regular expressions rather than specific
identifier names or relying on annotations to methods and
fields (attributes) rather than on their names. However, much
of pointcut fragility can be avoided by encouraging communi-
cation among developers, which is were Shaping Circulation
Realms can help. More organized communication will help

developers make more stable decisions regarding identifier
names on one side and pointcut definitions on the other side,
as well as being informed of inevitable changes early enough
to take appropriate actions.

E. Hallway Chatter

All the people on a project can’t communicate all the time,
but all the people need to be informed what’s happening on a
project in a timely manner. This means that there must be some
way of spreading news and even gossip throughout different
parts of the organization, which typically reside in different
parts of the building. The news should be allowed to spread in
informal communication among some of the people belonging
to these different parts of the organization. This is the Hallway
Chatter pattern.

Aspect-oriented modularization is based on affected code
being oblivious of the aspects that affect it. However, this
means that the developers or teams whose code is affected
by the aspects others have developed may be oblivious of
them, too. Consequently, they may wrongfully interpret the
changes in the program behavior and lose a lot of time until
they identify the real source of the problem. This is particularly
prominent with otherwise unannounced changes introduced
in dire straits. Hallway Chatter can contribute to raising the
awareness of what’s happening even with respect to such
seemingly very low level programming decisions at least by
just spreading the gossip that some aspects are being prepared
to get over the current situation.

VI. RELATED WORK

Others have tried to relate organizational and develop-
ment perspectives, too. Thus, Muller [19] reports that aspect-
oriented programming is beneficial to agile software devel-
opment iterations in terms of both time they take and code
that needs to be developed. This speaks in favor of our
findings how aspect-oriented programming is in line with
some organizational patterns of agile software development.
However, Muller’s study is limited to Aspect], hence ignoring
symmetric aspect-oriented programming.

Parsons [20] managed to unify the aspect-oriented software
development ontology published by van den Berg et al. [21]
with his own agile software development ontology, which also
speaks in favor of our findings. Parsons also observes difficul-
ties in identifying the relationships between some notions.

Santosa et al. [22] report on how pair programming, which
Coplien and Harrison consider to be an organizational pat-
tern [2], is related to aspect-oriented programming related
mistakes. Pair programming seems to increase mistakes in
implementation logic, choice of the advice type, and code
duplication, while decreasing mistakes in compilation, refac-
toring completeness, and excessive refactoring.

Burrows et al. [23] report a study on performing main-
tenance tasks with aspect-oriented programming in a pair
programming constellation. The study showed certain imple-
mentation strategies to be more fault-prone than others such as

specific techniques for accessing data from base code modules
and binding advice to pointcuts.

Apart from Coplien and Harrison [2], throughout whose
organizational patterns of agile software development resonate
general software development practices, Sagenschneider [24]
reports a pattern language for aligning object-oriented and
general programming practices with organizing people in an
office. This ranges from using comments to categorize work
to using multithreading to get more tasks done.

Picha et al. [25]-[27] propose a common model for project
pattern analysis. They focus on detection of organizational
antipatterns in software artifacts, such as repository commits,
but not in code itself.

VII. CONCLUSIONS AND FURTHER WORK

By observing Conway’s law, which explains how organizing
people directly affects the code they produce, and by taking
into account the specifics of different programming paradigms,
a lot can be done to improve the software development process.
We analyzed organizational patterns of agile software devel-
opment from the perspective of aspect-oriented programming,
whose aim is to improve the separation of concerns in code,
which, in turn, allows for better separation of tasks performed
by people.

We find aspect-oriented programming to be highly related
to at least nine out of more than a hundred of organizational
patterns in Coplien and Harrison’s catalog [2], namely: Work
Split, Team per Task, Sacrifice One Person, Divide and
Conquer, Conway’s Law, Form Follows Function, Hallway
Chatter, and Shaping Circulation Realms. Aspect-oriented
programming can support organizational patterns in division of
labor, treating distractions, and increasing decoupling between
the software modules developed by different parts of the
organization. On the other hand, organizational patterns can
help mitigate pointcut fragility and aspect obliviousness in
general.

Next steps should lead to the patterns that the ones we
analyzed refer to, i.e., to considering pattern sequences or
pattern sublanguages [28]. We assume that the most promising
candidates are those patterns referred to by several other
patterns proven to be related to aspect-oriented programming,
such as: Organization Follows Location (5), Gate Keeper (4),
Organization Follows Market (4), and Engage Customers (3).
The number in parentheses indicates how many patterns out
of those proven to be related to aspect-oriented programming
refer to the given pattern.

The People and Code pattern language embraces some
patterns that are very close to design patterns, such as Stan-
dards Linking Locations, Variation Behind Interfaces, Hierar-
chy of Factories, Parser Builder, Factory Method, and Loose
Interfaces, whose aspect-oriented implementation should be
explored for its relatedness to effective people organization.

It would be interesting to explore how are organizational
patterns related to microservices as a popular architectural
style, in particular for their noted uses in combination with
aspect-oriented programming [29].

ACKNOWLEDGMENTS

The work reported here was supported by the Scientific
Grant Agency of Slovak Republic (VEGA) under the grant

No.

VG 1/0759/19 and by the Research & Development Op-

erational Programme Research and Innovation for the project
Research of advanced methods of intelligent information pro-
cessing, ITMS NFP313010T570, co-funded by the European
Regional Development Fund.

(1]
(2]
(3]

(4]

(5]

(6]

(7]
(8]

(9]

[10]

(1]

[12]
[13]

[14]

REFERENCES

M. E. Conway, “How do committees invent?”” Datamation, vol. 14, no. 4,
pp. 28-31, 1968.

J. O. Coplien and N. B. Harrison, Organizational Patterns of Agile
Software Development. Prentice-Hall, 2004.

W. H. Harrison, H. L. Ossher, and P. L. Tarr, “Asymmetrically vs.
symmetrically organized paradigms for software composition,” IBM
Research, Tech. Rep. RC22685, 2002.

H. Ossher and P. Tarr, “Multi-dimensional separation of concerns and
the hyperspace approach,” in Software Architectures and Component
Technology. Kluwer, 2002.

J. Bélik and V. Vrani¢, “Symmetric aspect-orientation: Some practical
consequences,” in Proceedings of NEMARA 2012: International Work-
shop on Next Generation Modularity Approaches for Requirements and
Architecture, AOSD 2012. Potsdam, Germany: ACM, 2012.

1. Jacobson and P-W. Ng, Aspect-Oriented Software Development with
Use Cases. Addison-Wesley, 2004.

I. Jacobson, “Use cases and aspects — working seamlessly together,”
Journal of Object Technology, vol. 2, no. 4, 2003.

J. O. Coplien, “Borland software craftsmanship: A new look at process,
quality and productivity,” in Proceedings of 5th Borland International
Conference, Orlando, FL, USA, 1994.

J. O. Coplien and J. Erickson, “Examining the software development
process,” Dr. Dobb’s Journal of Software Tools, vol. 19, no. 11, pp.
88-95, 1994.

J. O. Coplien, “A generative development-process pattern language,” in
Pattern Languages of Program Design, J. O. Coplien and D. C. Schmidt,
Eds. ACM Press/Addison-Wesley Publishing, 1995, pp. 183-237.

J. Sutherland, J. O. Coplien et al., A Scrum Book: The Spirit of the Game.
The Pragmatick Bookshelf, 2019, https://sites.google.com/a/scrumplop.
org/published- patterns/book-outline — http://www.scrumbook.org/.

S. W. Ambler, Process Patterns: Building Large-Scale Systems Using
Object Technology. Cambridge University Press, 1998.

W. J. Brown, H. W. S. M. 111, and S. W. Thomas, AntiPatterns in Project
Management. John Wiley & Sons, 2000.

W. J. Brown, R. C. Malveau, H. W. M. III, and T. J. Mowbray,
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis.
John Wiley & Sons, 1998.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

P. A. Laplante and C. J. Neill, Antipatterns: Identification, Refactoring,
and Management. Auerbach Publications, 2005.

P. Brada and P. Picha, “Software process anti-patterns catalogue,” in
Proceedings of the 24th European Conference on Pattern Languages of
Programs, EuroPLoP '19. Trsee, Germany: ACM, 2019, to appear.
R. Miles, Aspect) Cookbook. O’Reilly, 2004.

C. Koppen and M. Stoerzer, “PCDiff: Attacking the fragile pointcut
problem,” in Proceedings of Ist European Interactive Workshop on
Aspects in Software, EIWAS 2004, Berlin, Germany, 2004.

J. Muller, “What are the benefits of aspect oriented programming to
project iterations developed using agile processes?” 2005, https://pdfs.
semanticscholar.org/d04e/d891fb64ea396£58689137971455727e2b51.
pdf.

D. Parsons, “An ontology of agile aspect oriented software develop-
ment,” Research Letters in the Information and Mathematical Sciences,
vol. 15, pp. 1-11, 2011.

K. van den Berg, J. M. Conejero, and R. Chitchyan, “AOSD
ontology 1.0 — public ontology of aspect-orientation,” AOSD-
Europe, Tech. Rep. IST-2-004349-NOE AOSD-Europe, 2005,
https://www.researchgate.net/publication/232905610_AOSD_Ontology _
10_-_Public_Ontology_of_Aspect-Orientation.

A. Santosa, P. Alvesa, E. Figueiredoa, and F. Ferrari, “Avoiding code
pitfalls in aspect-oriented programming,” Science of Computer Program-

ming, vol. 119, no. C, pp. 31-50, 2016.
R. Burrows, F. Taiani, A. Garcia, and F. C. Ferrari, “Reasoning about

faults in aspect-oriented programs: A metrics-based evaluation,” in
Proceedings of 2011 IEEE 19th International Conference on Program
Comprehension, ICPC 2011. Kingston, ON, Canada: IEEE, 2011.

D. Sagenschneider, “OfficeFloor: Using office patterns to improve soft-
ware design,” in Proceedings of 18th European Conference on Pattern
Languages of Programs, EuroPLoP 2013. TIrsee, Germany: ACM, 2015.
P. Picha and P. Brada, “ALM tool data usage in software process
metamodeling,” in 42nd Euromicro Conference on Software Engineering
and Advanced Applications, SEAA 2016. Limassol, Cyprus: IEEE,
2016.

P. Picha, P. Brada, R. Ramsauer, and W. Mauerer, ‘“Towards architect’s
activity detection through a common model for project pattern analysis,”
in Proceedings of 2017 IEEE International Conference on Software
Architecture Workshops, ICSAW 2017. Gothenburg, Sweden: IEEE,
2017.

P. Picha and P. Brada, “Software process anti-pattern detection in project
data,” in Proceedings of the 24th European Conference on Pattern
Languages of Programs, EuroPLoP ’19. Irsee, Germany: ACM, 2019,
to appear.

W. Sulaiman Khail and V. Vrani¢, “Treating pattern sublanguages as
patterns with an application to organizational patterns,” in Proceedings
of 22nd European Conference on Pattern Languages of Programs,
EuroPLoP ’17. Irsee, Germany: ACM, 2017.

T. Cerny, “Aspect-oriented challenges in system integration with mi-
croservices, SOA and IoT,” Enterprise Information Systems, vol. 13,
no. 4, pp. 467-489, 2018.

