Tracualifity ol s casen b oo cuske
S e
[prodecaghy
-) e bR

= Folder structure:

Entity 4 Enbity 2

[—
) S - DataModel
ST - ExtUseCase

A T - - 1ibs

d i

UseCase
- Utils

- View

An Opportunistic
Approach to Retaining
Use Cases in Object-
Oriented Source Code

Jan Greppel and Valentino Vrani¢

Institute of Informatics and
Software Engineering

STU SLOVAK UNIVERSITY OF
FIIT

TECHNOLOGY IN BRATISLAVA
I I FACULTY OF INFORMATICS
AND INFORMATION TECHNOLOGIES

vranicawstuba.sk
fiit.sk/~vranic

jangreppel@gmail.com

ECBS-EERC 2015
Brno, August 27, 2015

What is a use case and where is its
place 1n the overall software system
design?

Add a New Product

User: seller
Precondition: The user is logged in as a seller.

1. The user selects to add a new product.
2. The system prompts the user to fill the necessary information.
3. The user fills in the information and submits it.
4. The system:
a) validates the information
b) creates the new product
c¢) notifies user about the creation of a new product
d) shows the list of all products added by the current user
5. The use case ends.

Alternative scenario:
(if the filled in information is empty or in a wrong format)
4. The system

a) validates the information

b) displays the error message

c) (step 3 again)

\
\ Add a New

Product Place an
Order

"= Add a New

Product E Place an — Dispatch an
Order — Order -

"= Add a New

Product s Placcan mmmm Dispatchan s ReAs?;EELt[}J}IZn
Order — Order | e—

> A use case as a bead of behavior on the string of
the basic functionality and underlying data

What the system is
VS.
What the system does

> Use cases are a variable part of a software system:
can be added or removed, but also can change

> The underlying structure may change, too, but far
less frequently

> Use cases are comprehensible to all stakeholders,
including the users

> But once translated into code, a use case model
quickly becomes outdated

> A need to retain/preserve use cases in the code
itsell

> What can be retained out of a use case in code?

> Something is always retained, but some approaches aim
explicitly at preserving use cases in code

> DCI (Data, Context and Interaction; Reenskaug and Coplien):
a fairly complex approach that manages to isolate use cases
into roles

> Aspect-oriented software development with use cases
(Jacobson and Ng): requires aspect-oriented programming

> Preserving use case flows in source code (Bystricky and
Vranic)

> What of a use case can be retained in OOP in an
opportunistic manner?

> Common OOP preserves only use case fragments
as methods and the include relationship as method

call

> No direct support tor the extend relationship and
peer use cases

Add a New Product

User: seller
Precondition: The user is logged in as a seller.

1. The user selects to add a new product.
2. The system prompts the user to fill the necessary information.
3. The user fills in the information and submits it.
4. The system:
a) validates the information
b) creates the new product
c¢) notifies user about the creation of a new product
d) shows the list of all products added by the current user
5. The use case ends.

Alternative scenario:
(if the filled in information is empty or in a wrong format)
4. The system

a) validates the information

b) displays the error message

c) (step 3 again)

Add a New Product

User: seller
Precondition: The user is logged in as a seller.

1. The user selects to add a new product.

2. The system prompts the user to fill the necessary information.

3. The user fills in the information and submits it.
4. The system:

a) validates the information

b) creates the new product

¢) notifies user about the creation of a new product

d) shows the list of all products added by the current user
5. The use case ends.

Alternative scenario:
(if the filled in information is empty or in a wrong format)
4. The system

a) validates the information

b) displays the error message

¢) (step 3 again)

class Products {
function add() {
$form = new ProductForm();
$form»setData($this»getPost());

// Validate the information

if (Sform~isvalid()) {
// Create the new product
ProductsDM::insert($this»getPost());

// Notify the user ahout

// the creation of a new product

Messenger::getInstance()»
addMessage('Product added');

// Show the list of all products
// added by the current user
$this»dispatch('Products,
'showListOfCurrentUser");
return;
)
// Show the form (prompts the user
// to fill the necessary information)
$this»view = $form-render();
)

function showListOfCurrentUser() {
/...
)
}

Add a New Product

User: seller
Precondition: The useris logged in as a seller.

1. The user selects to add a new product.

2. The system prompts the nser to il the necessary information.

3. The user fills in the information and submits it.
4. The system:

a) validates the information

I creates the new product

¢) notifies user about the creation of a new product

) shows the list of all products added by the current user
5. The nse case cnuds.

Alternative scenario:
(il the filled in information is empty or in awrong format)
4. The system

a) validates the information

By displays the error message

¢} (step 3 again)

=), DataModel
P Products.php

class Products |
function add() |
Slort = new ProductForm();
StormesetDataisthis »getPostil):

A¥Walidate the information
il (Sformesisvalid(j) |
A Create the new product
Products DM zinsert(Sthis-getPostO;

A Notilv the user about

A the ereation of a new product

Messenger:getInstance ()
addMessage(Product added)

A Show the list of all products
Hadded by the current user
sthissdispatchi Produets)

‘showListOfCurrentUser);
returtg;

 Shosy the form {prampts the user
Aol the necessary information)
Sthis=view = Storm-render);

)

function showListOfCurrentUser() {
i

]

1

Traceability of use cases in source code

~ (b insert(array $values)

E}u UseCase
- =1} Seller

- @ add()
=) Utils

=), Forms

Traceability of use cases in source code

=1 DataModel
- fsl Products.php

- insert(z $values)

= /. UseCase
=1}, Seller

----- mg Products.php
@ add()
=} Utils
=), Forms
@i ProductForm.php

+ Actor 1

+ Actor 2

Entity 1 Entity 2

Use Cases

s N
N
N
N

N

I
I
|
I
' | \
,' <<use>> N <<use>>
| AN
I
]

N

N

— V —I\QX

View

Data Model

> Folder structure:

Entity 1 Entity 2
| —
X Actor 1 Use Cases]
| - DataModel
- Actor 2 @
I
TN - ExtUseCase
[
e f N - e
//2<use>>]J'I<<use>>\\f<use>> —_— _J].bS
// i \
Utils View Data Model Se ase

- Utils
- View

specification I design I implementation

for every use case

Peer use case

Controller

[
|
|
|
|
:
[Traits
| fragments
[
|
l '
|
: Extension use case The Event
: fragments Pattern
|
use cases use case ol st
: code
: . epeated use case > Classi‘c
: \ fragments OOP design
I \ L
: \)
I AN
I \ use case The Front
L e >
|
|
|
|

— e — —— S S — — — — — — — — — — — — — — — — — — —— —

> Change requests are expressed in the application domain terms: the language of
use cases

> With respect to use cases, any change request can be seen as a set of the
following actions:

- Add a use case
- Remove a use case

- Alter a use case

> The evaluation of the approach has been performed qualitatively on the online
shop application in terms of these actions

> The resulting changes to the code are well localized:

- Typically, only a few modules have to be changed
- In case of removal, modules are mostly removed as a whole

Summary

> An opportunistic approach to retaining use cases in source code by object-
oriented means that employs:

- Traits
- The Event pattern

- The Front Controller pattern

> With only a moderate effort, use cases are quite easily located and manipulated
in code

> The ability to discern different parts of the use case and implement it in
appropriate places of source code is critical

> Targeting the client-server architecture and interactive enterprise systems

> Continuous refactoring efforts assumed

