Tracualifity ol s casen b oo cuske
S e
[ prodecaghy
- ) e bR

= Folder structure:

Entity 4 Enbity 2

[ —
) S - DataModel
ST - ExtUseCase

A T - - 1ibs

d i

UseCase
- Utils

- View




An Opportunistic
Approach to Retaining
Use Cases in Object-
Oriented Source Code

Jan Greppel and Valentino Vrani¢

Institute of Informatics and
Software Engineering

STU SLOVAK UNIVERSITY OF
FIIT

TECHNOLOGY IN BRATISLAVA
I I FACULTY OF INFORMATICS
AND INFORMATION TECHNOLOGIES

vranicawstuba.sk
fiit.sk/~vranic

jangreppel@gmail.com

ECBS-EERC 2015
Brno, August 27, 2015



What is a use case and where is its
place 1n the overall software system
design?



Add a New Product

User: seller
Precondition: The user is logged in as a seller.

1. The user selects to add a new product.
2. The system prompts the user to fill the necessary information.
3. The user fills in the information and submits it.
4. The system:
a) validates the information
b) creates the new product
c¢) notifies user about the creation of a new product
d) shows the list of all products added by the current user
5. The use case ends.

Alternative scenario:
(if the filled in information is empty or in a wrong format)
4. The system

a) validates the information

b) displays the error message

c) (step 3 again)
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> A use case as a bead of behavior on the string of
the basic functionality and underlying data

What the system is
VS.
What the system does

> Use cases are a variable part of a software system:
can be added or removed, but also can change

> The underlying structure may change, too, but far
less frequently



> Use cases are comprehensible to all stakeholders,
including the users

> But once translated into code, a use case model
quickly becomes outdated

> A need to retain/preserve use cases in the code
itsell



> What can be retained out of a use case in code?

> Something is always retained, but some approaches aim
explicitly at preserving use cases in code

> DCI (Data, Context and Interaction; Reenskaug and Coplien):
a fairly complex approach that manages to isolate use cases
into roles

> Aspect-oriented software development with use cases
(Jacobson and Ng): requires aspect-oriented programming

> Preserving use case flows in source code (Bystricky and
Vranic)



> What of a use case can be retained in OOP in an
opportunistic manner?

> Common OOP preserves only use case fragments
as methods and the include relationship as method

call

> No direct support tor the extend relationship and
peer use cases
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class Products {
function add() {
$form = new ProductForm();
$form»setData($this»getPost());

// Validate the information

if (Sform~isvalid()) {
// Create the new product
ProductsDM::insert($this»getPost());

// Notify the user ahout

// the creation of a new product

Messenger::getInstance()»
addMessage('Product added');

// Show the list of all products
// added by the current user
$this»dispatch('Products,
'showListOfCurrentUser");
return;
)
// Show the form (prompts the user
// to fill the necessary information)
$this»view = $form-render();
)

function showListOfCurrentUser() {
/...
)
}
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Traceability of use cases in source code
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> Change requests are expressed in the application domain terms: the language of
use cases

> With respect to use cases, any change request can be seen as a set of the
following actions:

- Add a use case
- Remove a use case

- Alter a use case

> The evaluation of the approach has been performed qualitatively on the online
shop application in terms of these actions

> The resulting changes to the code are well localized:

- Typically, only a few modules have to be changed
- In case of removal, modules are mostly removed as a whole



Summary

> An opportunistic approach to retaining use cases in source code by object-
oriented means that employs:

- Traits
- The Event pattern

- The Front Controller pattern

> With only a moderate effort, use cases are quite easily located and manipulated
in code

> The ability to discern different parts of the use case and implement it in
appropriate places of source code is critical

> Targeting the client-server architecture and interactive enterprise systems

> Continuous refactoring efforts assumed



