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Abstract

Use case driven modularization improves code comprehension and
maintenance and provides another view on software alongside
object-oriented modularization. However, approaches enabling use
case driven modularization require to modularize code manually.
In this paper, we propose an approach to employing issues and
commits for in-code sentence based use case identification and
remodularization. The approach aims at providing use case based
perspective on the existing code. The sentences of use case steps
are compared to sentences of issue descriptions, while the sentences
generated from the source code of issue commits are compared
to sentences generated from the corresponding methods in source
code in order to quantify the similarity between use case steps
and methods in source code using different similarity calculation
algorithms. The resulting level of similarity is used to remodularize
source code according to use cases. We conducted a study on the
OpenCart open source e-shop employing 16 use cases. The approach
achieved the recall of 3.37% and precision of 75%. The success of
the approach strongly depends on issues and commits assigned
to them. The results would be better especially for the code that
natively employs use case driven modularization.

CCS Concepts o Software and its engineering — Abstraction,
modeling and modularity; Software reverse engineering; Soft-
ware version control; Maintaining software

Keywords use case, traceability links, information retrieval, nat-
ural language processing, text similarity, intent, modularization,
remodularization, DCI, aspect-oriented programming

1. Introduction

The comprehension of what systems actually do is better in code
organized according to concerns of use cases than in common object-
oriented modularization, as is implied by multiple studies [3l 4} 9]
21]]. Also, responding to changes is improved in case of specific
change types [[7]. However, code has to be modularized according to
use cases manually. Unfortunately, automatic modularization would
require to identify use cases in source code.
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Since object-oriented code can be transformed into natural
language [11} [15]] or other way around, e.g., use cases can be
transformed into object-oriented code using RSL (Requirements
Specification Language) [30l], recognizing which object-oriented
code belongs to which use case can be achieved by employing
syntactic, lexical, and semantic text similarity approaches. For
example, Jaccard, Cosine, and Dice are common approaches to
detect lexical similarity at the sentence level [24]. But what is crucial
for detecting the context is the semantic similarity. By employing
thesaurus, such as is in WordNet [16]], it is possible to detect
semantically similar words, i.e., synonyms, words with broader
meaning so called hypernyms, and with more specific meaning so
called hyponyms. This is implemented in tools such as Natural
Language Toolkit [[1].

Similarity between software artifacts was heavily studied before
in approaches recovering traceability links, which employ informa-
tion retrieval methods. For example, documentation to code trace-
ability identification using latent semantic indexing [14]], corpus [8],
ontologies [27], or Wikipedia [13]. However, these approaches ad-
dress software artifacts or documents similarity in general, but they
do not deal with similarity between use cases and source code explic-
itly. There are many use case notations out of which most famous are
Cockburn’s [6] and Jacobson’s [9]. Programming styles also vary
significantly, even within the same programming language, with
differences in naming conventions, modularity, commenting, etc.

There are also approaches aiming explicitly at traceability links
between use cases and source code. But they do not offer automatic
detection of traceability links from use cases and source code, but
require external influence, such as human involvement [12} 28] or
monitoring developers [18]. Automatic identification of traceability
links is concurrent research problem.

Fortunately, issue tracking systems provide a solid knowledge
base for use case identification in code. For example, domain specific
concerns are present in pull request discussions [20], but they are
observable in code, too. The relation between pull requests and
corresponding code could be employed to recognize the similarity
between use cases and code in order to overcome the difference in
the abstraction level of use cases and source code.

In this paper, we propose an approach to employing issues and
commits for in-code sentence based use case identification and
remodularization. The rest of the paper is organized as follows.
Section [2] explains the textual similarity between use cases and
code on an example. Section [3|describes how the difference in the
abstraction level of use cases and source code can be overcome.
Section [] proposes the methods for the in-code sentence based
use case identification. Section[5]explains the use case based code
remodularization. Section[f]presents the evaluation results. Section[7]



discusses the results. Section[§]compares our approach to existing
approaches. Section [J9] concludes the paper and presents some
challenges.

2. Textual Similarity Between Use Cases and
Source Code

There is a significant similarity between use cases and source code
at the text level. Specific words from use cases often appear in their
implementation, e.g., in identifiers, string literals, file, and folder
names. We will explore this on examples taken from our study of
open source e-shop OpenCanﬂ

Consider the Order Gift Certificate use case:

1. The customer selects to purchase a gift
certificate

2. The system prompts for name, email,
recipient’s name and email, gift certificate
theme, and message

3. The system requires to confirm gift
certificates are non-refundable

4. The customer enters the name, email, theme,
message and confirm that gift certificates
are non-refundable

5. Include "Show Cart"

Include "Place Order"

7. The system sends an e-mail with details
how to redeem gift certificate

[¢)

In step 2, the system prompts for information required to proceed
with the order, i.e., name, email, recipient’s information, theme, and
message. This information can be found in implementation, too.
Consider the following form:

<form action="<7php echo $action; ?>" method=...>
<input type="text" name="to_name" value.../>
<input type="text" name="to_email" value.../>
<input type="text" name="from_name" value.../>
<input type="text" name="from_email" value.../>
<input type="radio" name="voucher_theme_id".../>
<textarea name="message" cols="40" rows="5">...
<input type="submit".../>

</form>

Since all the information from the use case step can be found in
this form, it is probable that the form is a part of the use case
step implementation. User steps usually refer to attributes and the
attribute names can be found in user interface implementation.
These, for example, include user interface templates, views, or
forms.

After identifying the form, it is easy to look up the other steps,
too. For example, the form is generated by the
ControllerAccountVoucher class:

class ControllerAccountVoucher extends Controller {
public function index() {
$data[’text_agree’] = "I understand that gift
certificates are non-refundable."

$data[’action’] =
$this->url->1link(’account/voucher’, ’’, true);

if ($this->customer->isLogged())
$data[’from_name’] =
$this->customer->getFirstName(). *

'The use cases along with their implementation are available at
github.com/useion/opencart/tree/master/upload/catalog,

$this->customer->getLastName() ;

$this->response->setOutput (
$this->load->view(’account/voucher’, $data));

}}

Here, the string literal with the message to confirm certificates
are non-refundable is assigned to the text_agree variable, where
multiple words match with step 3 of the Order Gift Certificate
use case. More specifically, these words are: “understand,” “gift
certificate,” and “non-refundable.”

Notice also this line of the ControllerAccountVoucher class:

$this->customer->getFirstName ()

The getFirstName () method is called to retrieve the customer’s
name. After removing the special characters, such as dollar signs,
dashes, dots, apostrophes, and round, curly, and angle brackets, this
line becomes a sentence:

This customer get(s) (the) first name.

Consider also the sentence in step 4 of the Order Gift Certificate use
case:

The customer enters the name.

Obviously, these sentence are very similar. Word “get” is the syn-
onym of word “enter”” according to WordNet [16], words “customer”
and “name” are present in both sentences, and “this” is interchange-
able with “the” in this case. The degree of similarity between two
sentences can be determined by semantic similarity calculation algo-
rithms. For example, the sentences are similar up to 80% according
to the semantic similarity toolkit [22]] and up to 65% according
to the similarity calculated according to semantic nets and corpus
statistics [[10]].

However, semantic similarity calculation algorithms are not
always capable of correctly identifying similar sentences. Consider
the following sentence:

Load controller.

obtained from the following line of code:
$this->load->controller (’common/header?’) ;

Comparing it to the following use case step:

The customer selects to purchase a gift certificate.

we get a similarity of 31% according to the similarity based on
semantic nets and corpus statistics [10] and 21% according to the
semantic similarity toolkit [22], but the sentences express something
completely different.

Additionally, nouns in use cases can be used for recognition
of domain model classes in architectural pattern Model-View-
Controller. Continuing with our example, the domain model classes
are Customer, Cart, and Email, because they appear as nouns in the
use case and as classes in source code.

Next, when systems employ object relational mapping, they
include attributes matching words in use cases. For example, the
Voucher model has the following attributes: name, email, theme,
message, amount, and date added. These attributes match with the
words from step 2 of the Order Gift Certificate use case. Also,
when looking at the similarity of words “voucher” and “certificate,”
according to WordNet [16], “document” is a hypernym for both of
them. Based on the attributes and this hypernym, it is reasonable
to assume that the Voucher model is a part of the use case step
implementation.

Table [Tl summarizes textual similarities between use cases and
source code. Although use cases are written in different languages
than source code, both use cases and source code contain domain
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Table 1. Textual similarity between use cases and source code.

Use case | Source code
Abstraction level High Low
Language Natural | Programming
Technical details No Yes
Domain specific words Yes
Form Structured

specific words and have the structured forms. Natural language is
free, but source code has to adhere specific syntax of programming
language. Source code also contains technical details, such as
algorithms. Use cases on the other hand do not. However, the most
significant difference is in the abstraction level of use cases and
source.

3. Overcoming the Difference in the Abstraction
Level of Use Cases and Source Code

As we saw in the previous section, despite the tools are capable
of identifying hypernyms and hyponyms, the difference in the
abstraction level of use cases and source code significantly worsens
the results. In the end, semantically similar sentences end up with
unsatisfactory similarity result and completely unrelated sentences
are recognized as similar. To mitigate this problem, we investigate
employing issue descriptions and commits here.
Consider this construct in the sendVoucher () method of the

ModelSaleVoucher class:

$data[’text_greeting’] =
sprintf ($this->language->get (’text_greeting’),
$this->currency->format ($voucher_info[’amount’],
$this->config->get (’config_currency’)));

Exactly the same code appears in the changed code of a commit
assigned to the following issu

Sending a voucher by e-mail leads to an error like this: PHP

Notice: Undefined index: in {server }\system\library\cart\currency.php

on line 25 and lines 26,27 and 30.
This is because the voucher is not created from an order.
Now it takes the currency value from config.

This relationship can be used to identify the following use case step
in the code:

The system sends an e-mail with details
how to redeem a gift certificate

What enables this is that this step is similar to a specific sentence in
the issue description:

Sending a voucher by e-mail leads to an error

The similarity of these sentences is 48% according to the
similarity based on semantic nets and corpus statistics [[10] and
50% according to the semantic similarity toolkit [22]. Notice, a gift
certificate can be used for discount, while a voucher can be used
to obtain a particular product. Despite the words “voucher” and
“certificate” have different meaning, they share the same hypernym,
“document”. Such relations can be used to overcome the difference
in the abstraction level of use cases and source code.

4. Use Case Identification in Source Code

In this section, we present three methods of identifying use cases in
source code. The methods are based on synonym, hypernym, and hy-
ponym analysis (Section[4.I)), sentence similarity between use cases

2 The issue is available at|github.com/opencart/opencart/pull/4822,

and code (Section[f.2), and semantic similarity between issues and
commits (Section[d.3). Here, each method is presented conceptually,
but all three methods —including their combination— were actually
implemented and evaluated, which is described in Section[6] Use
case remodularization, which is explained in Section[3] is based on
the results of these methods.

4.1 Synonym, Hypernym, and Hyponym Analysis

The first method of identifying use cases in source code is based
on the similarity between all the words from use case steps along
with their synonyms, hypernyms, and hyponyms and all the words
from a particular method in source code except the reserved words
of the corresponding language. The result of this calculation is a
percentage similarity between a given use case step and method in
source code.

The reserved words of a programming language are not taken
into consideration when calculating the similarity because they could
deteriorate the results. For example, consider the “return” keyword
in PHP and the Return Product use case. Word “return” would be
found in all methods if this keyword was not removed. Also, we
take into consideration only nouns, verbs, and adjectives because
other word classes, such as conjunctions, prepositions, articles, etc.,
do not identify classes and methods in source code.

Given a use case step and a method in source code from the
system under considerations, this method of identifying use cases in
source code works as follows:

1. All nouns, verbs, and adjectives are extracted from the use case
step.

2. The words are converted into lemmas
3. The plural nouns are converted into their singular form.

4. Synonyms, hypernyms, and hyponyms are retrieved for each
such word.

5. The reserved words are removed from the method in source code
(the reserved words depend on the programming language).

6. The similarity of the use case step and method is expressed as a
percentage of equal words to all nouns, verbs, and adjectives in
the use case step.

This method of identifying use cases in source code is applied
to all use case steps in all use cases and all methods in the system.
To choose only the methods in source code with a high similarity to
use case steps, to each use case step, we applied the algorithm for
calculating the biggest difference:

1. The methods are ordered by their similarity in ascending order.

2. The differences between the similarities of each n-th and n+1-th
method are calculated.

3. If the biggest difference is between the similarities of n-th and
n + 1-th method, the methods after the n + 1-th method and
with over the 50% similarity are selected.

We considered various methods of selecting methods in source
code with the high similarity. For example, selecting methods
in source code above mean, average, or above specific percent.
However, the algorithm for calculating the biggest difference takes
into consideration also the sets with a lot of methods in source code
having low or high number of similarity.

4.2 Sentence Similarity Between Use Cases and Code

As we observed in Section[2] the sentences created from code can be
similar to the sentences from use cases. In this section, we present

3 Lemmas are word forms selected to represent sets of the words with the
same root.
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a method of identifying use cases in source code that generates
sentences from code and compares them to the sentences from use
cases using a semantic similarity calculation algorithm.

The similarity between a use case step and a method in source
code is calculated as follows:

1. The following types of sentences are created from code:

(a) From the method name: Class name + method name (e.g.,
given the ControllerAccountVoucher class and add ()
method, the sentence would be “Controller account voucher
add.”)

(b) From the method calls: Object name + method name (e.g.,
given the $order->add(...) call, the sentence would be
“Order add.”)

2. The sentences from the use case step are compared with the
sentences created from code according to a semantic similarity
calculation algorithm (no specific algorithm is enforced).

3. The maximum similarity of all the similarities for the method,
i.e., between method name, its assignments, calls, and the use
case step, is sentence similarity between use cases and code.

4. The algorithm for calculating the biggest difference is applied
to the use case step after calculating all the similarities for each
method.

4.3 Semantic Similarity Between Issues and Commits

Issues in change management systems, such as GitHub, are de-
scribed in few sentences or paragraphs. After an issue description
is formulated, it is analyzed by developers who attempt to resolve
it. If they resolve the issue, they assign commits to it. This relation
between the issue description and the code that was changed from
the commit is used further. In this section, we present a method
of identifying use cases in source code based on relations between
issues and commits.

The method of identifying use cases in source code between a
use case step and a method in source code works as follows (see

also Fig.[I):
1. Sentences are generated from the method (as in Section4.2).

2. Five issues that have the highest semantic similarity between the
issue name and the use case name are selected for the given use
case.

3. Sentences from the changed methods of commits assigned to the
issues are generated.

4. For each issue, the similarity is calculated by generating the
sentences from the code changed in issue commits (as in Sec-
tion[d.2) in two ways:

(a) Between the sentences from a particular issue description
and use case step

(b) Between the sentences from the code changed in issue
commits and the sentences from the method based on a
semantic similarity calculation algorithm.

5. The similarity is calculated as the average of the maximum
similarity from steps 4a and 4b.

6. The algorithm for calculating the biggest difference is applied
to the use case step after calculating all the similarities for each
method.

5. Use Case Remodularization

Different approaches to preserving use cases in code rely on different
use case representation. Thus, use cases are represented by classes

compared according

to similarity
calculation

algorithm

consists of

Use case
step

Sentences from
use case step

Sentences from
issue message

consists of

consists of maximum
Issue value Use case
description

assigned to
maximum

-
generating value

sentences from
code

Source
code

generating
from method

Sentences from
code changed
in commit

Sentence from
method

compared according
to similarity
calculation algorithm

Figure 1. Similarity based on relations between issues and com-
mits.

in InFlow [4], partial classes in literal inter-language use case driven
modularization [3}15]], roles in DCI [21]], or aspects in aspect-oriented
software development with use cases [9]]. Since our methods of
identifying use cases in source code yield methods (operations) in
source code related to use case steps, it is not possible to employ
InFlow and DCI because DCI uses roles to organize code, and
applying InFlow would require to affect code to a large extent,
e.g., by moving method bodies, changing method parameters, etc.
However, use cases can be represented by aspects [9], though
methods similar to multiple use cases would be duplicated in
multiple aspects and these duplicates would necessarily get into
an unsynchronized state on the course of changes. Therefore, we
employ literal inter-language use case driven modularizationﬂ since
this approach features synchronization of duplicate code.

In literal inter-language use case driven modularization, each use
case along with its implementation is in a use case file. Since use
case files are written in Markdown [5]], partial classes in different
programming languages can be mixed in one file. This is the use case
file for the Order Gift Certificate use case introduced in Section 2

# Use case Order Gift Certificate

## Main scenario

# Code

## controller/account/voucher.php

€< (php

<?php

class ControllerAccountVoucher extends Controller {
public function index() { ... }
public function success() { ... }
protected function validate() { ... } }

ccc¢

## model/extension/total/voucher_theme.php

ccc¢ h
php

<7php

class ModelExtensionTotalVoucherTheme extends Model {
public function getVoucherThemes(...) { } }

4 The project site is available at useion.com,
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## controller/checkout/confirm.php

¢ {php

<?php

class ControllerCheckoutConfirm extends Controller {
public function index() { ... } }

(X3

## model/checkout/order.php

(31 (php

<7php

class ModelCheckoutOrder extends Model {
public function addOrder($data) { ... } }

[

## model/extension/total/voucher.php

(31 (php

<?php

class ModelExtensionTotalVoucher extends Model {
public function addVoucher(...) { ... } }

ccc¢

As can be seen, a use case file contains the use case itself followed
by partial classes that implement it. It is the methods of these
partial classes that are being identified by our method (presented
in the previous section). Subsequently, these methods are used
in the remodularization process. Any changes to these files are
synchronized with the executable code and vice versa, which is
covered in detail elsewhere [35]].

6. Evaluation

We evaluated the methods of identifying use cases in source code
proposed in Section [f on a study of the Catalog module of the
OpenCart open source e-shop system (introduced in Section [2))
employing 16 use cases and 141 methods in 38 classes (with each
class in its own file). The study considered the following use cases

e [ogin

e Change Password

e Subscribe To Newsletter

® Register Account

e Show Wishlist

e Wish Product

e Remove Product

e Add Product

® Register Affiliate Account
e Estimate Shipping And Taxes
e Place Order

e Use Reward Points

e Show Order Detail

e Use Coupon Code

e See Reviews Of Product

e Review Product

The module is written in PHP and uses Model-View-Controller
architectural pattern.

5The use cases and their implementation is available at
github.com/useion/code-uc-synon-ident/tree/master/examplem.

We implemented all three methods of identifying use cases
in source code described in Section[d] We also implemented the
use case remodularization script (Section E] in JavaScript using
Node.js. Since NLTK 1is written in Python and our methods in
JavaScript, we interfaced them using remote procedure call client in
JavaScript and server in Python.

Synonyms, hypernyms, and hyponyms are obtained from Word-
Net using NLTK. Word classes are determined by the standard
Treebank part-of-speech tagger (maxent_treebank_pos_tagger) of
NLTK and lemmas are determined by the stem package of NLTK.
Plural nouns are converted into singular nouns using Pattern[] We
implemented and compared two similarity calculation algorithms:
Levenshtein’s distance’|and sentence similarity based on semantic
nets and corpus statistics [IOJH

The methods of identifying use cases in source code are expected
to find correct relations between use case steps and methods in
source code. We determine this by measuring a percentage of
correctly identified methods over all correctly identified methods
(recall) and a percentage of correctly identified methods over all
identified methods (precision). Sections[6.1]to[6.4] present the results
of calculating the similarity based on each of the three methods
of identifying use cases in source code and on the combination of
these methods. Section[6.5]presents the overall results. Section [6.6]
identifies threats to validity.

6.1 Synonym, Hypernym, and Hyponym Analysis

The results of counting correct and incorrect relations between use
case steps and methods in source code using the similarity based on
synonyms, hypernyms, and hyponyms are summarized in Table
The legend is as follows:

Lemmas Lemmas only

Synonyms  Lemmas and synonyms

Hypernyms Lemmas, synonyms, and hypernyms
Hyponyms Lemmas, synonyms, hypernyms, and hyponyms

In the case of relying on lemmas only, the method of identifying
use cases in source code was able to detect 40.40% of correct
relations, though 22 methods were identified on average incorrectly,
which is the precision of 10.05%. Adding synonyms helped to detect
correct relations about 10.16%, but the number of incorrect relations
increased on average about 34 lowering the precision to 7.02%. As
was expected, adding hypernyms and hyponyms into account helped
even more with detecting correct relations—about 8.03%—but the
number of incorrectly identified relations increased a little lowering
the precision to 6.73%.

6.2 Sentence Similarity Between Use Cases and Code

Table [3| shows the results of the sentence similarity between use
cases and code[r] The legend is as follows:

© The implementation of the methods is available at|github.com/useion/code-
uc-synon-ident| and github.com/useion/code-uc-sentences-ident. The use
case remodularization script is available at|github.com/useion/remodularizel

7 Pattern is available at pypi.python.org/pypi/Pattern,

8 Levenshtein’s distance is implemented in the similarity module of Node.js
available at https://www.npmjs.com/package/similarity.

9The script implementing the sentence similarity based on seman-
tic nets and corpus statistics is available at |github.com/sujitpal/nltk-
examples/blob/master/src/semantic/short_sentence_similarity.py.

10 The results for each use case can be found at|github.com/useion/code-uc-
synon-ident/blob/master/Output-m-50.xIsx,

1 The results for each use case can be found at github.com/useion/code-

uc-sentences-ident/blob/master/Output-50.xIsx  (see the Output-direct
columns).
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Table 2. The results for the method of identifying use cases in
source code based on synonyms, hypernyms, and hyponyms.

Recall [%] | Precision [%]
Lemmas 40.40 10.05
Synonyms 50.56 7.02
Hypernyms 58.59 6.73
Hyponyms 58.59 6.86
DirectLeven: the sentence similarity between use cases and

code using Levenshtein’s distance

DirectLi: the sentence similarity between use cases
and code using semantic nets and corpus

statistics [10]

Table 3. The results for the sentence similarity between use cases
and code.

Recall [%] | Precision [%]
DirectLeven 13.13 20
DirectLi 11.11 13.58

Levenshtein’s distance calculation is not a semantics based sim-
ilarity calculation algorithm, because it is based on measurement
of difference between two string sequences, but DirectLi is. Sur-
prisingly, the string based similarity calculation algorithm identified
more correct relations than the semantic based one about 2.02%
with precision 20. Furthermore, the semantics based similarity cal-
culation algorithm identified more incorrect relations lowering the
precision to 13.58%. Therefore, DirectLeven performed better than
DirectLi.

6.3 Similarity Based on Relations Between Issues and
Commits

The results for the method of identifying use cases in source code
based on relations between issues and commits are displayed in
Table El FZ] The legend is as follows:

IssueLeven: the method of identifying use cases in source
code based on relations between issues and
commits using Levenshtein’s distance

IssueLi: the method of identifying use cases in source

code based on relations between issues and
commits using semantic nets and corpus
statistics [[10]

Since our study is based on OpenCart, we used OpenCart’s issues
and commits to populate our database with the relations between
issues and commits. The semantics based similarity calculation
algorithm found more correct relations about 22.23% with both
having almost a same precision. Therefore, IssueLi performed better
than IssueLeven here.

Although NLTK was in RAM and GitHub requests and the
similarity measures were cached, it took approximately one hour
for each use case to calculate results the of IssueLi. This is because
the issue descriptions contained a lot of sentences that had to be
compared with use case sentences and all the sentences from the
changed code of issue commits compared with the sentences from
source code of the application.

12 The results for each use case can be found at github.com/useion/code-
uc-sentences-ident/blob/master/Output-50.xIsx| (see the Output-issue
columns).

Table 4. The results for the similarity based on relations between
issues and commits.

Recall [%] | Precision [%]
IssuelLeven 27.27 3.46
Issueli 49.5 3.96

6.4 Combining the Methods of identifying Use Cases in
Source Code

The methods of identifying use cases in source code evaluated in
Sections [6.1] [6.2] and [6.3] were combined in different configurations
and the results are presented in Table[5] Only those relations are
considered which are identified in all methods of identifying use
cases in source code in a particular combination We used the
following configurations:

All Lemmas, Synonym, Hypernym, Hyponym, DirectLi,
DirectLeven, Issueli, IssueLeven

Li DirectLi, Issueli

Leven DirectLeven, IssueLeven

Table 5. Recall and precision of the combinations of methods of
identifying use cases in source code.

Recall [%] | Precision [%]
All 3.37 75
Li 6.06 45.15
Leven 3.03 75

The All configuration decreased the number of incorrectly identi-
fied relations almost to zero raising the peak of precision to 75 as
was expected, but it also dramatically decreased the number of cor-
rect relations to 3.37%. Comparing the Leven and Li configurations,
the results indicate that Leven is better than Li, although its recall is
lower than in Li, which was not expected, because Leven does not
employ semantic similarity calculation algorithm.

6.5 Overall Results

Table[6] presents normalized average values of recall and precision
attributes. The data was normalized by standard score. The higher
the number is, the better at use case identification in code particular
approach is. The best results were achieved using All, as was
expected. Slightly behind are Leven, Hyponyms, and Hypernyms.
Leven has high precision and Hyponyms and Hypernyms have high
recall. The sentence similarity between use cases and code ended up
the worst with recall approximately 12% and precision 16%. The
similarity based on relations between issues and commits strongly
depends on the issues.

6.6 Threats to Validity

There are several internal threats to validity we consider significant.
First, different programmers could consider different methods to be
part of use case implementation, which could affect the results.
Second, more precise results could be achieved with a better
similarity calculation algorithm. Third, using a dictionary other
than WordNet, or a different part-of-speech tagger could affect the
results.

We also consider as significant the following external threats
to validity. First, complex systems, systems of other domains, or
systems employing different architecture could affect the results.
In particular, better results would be achieved in systems having

13 The script that combines the results is available at github.com/useion/code-
uc-sentences-ident/blob/master/merge.js.
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Table 6. Overall results.
All 0.349

Leven 0.341
Hyponyms 0.33
Hypernyms | 0.327
Synonyms | 0.156

IssueLi 0.078
Lemmas -0.01
Li -0.13
DirectLi -0.59
DirectLeven | -0.43
IssueLeven -0.42

use cases represented in code. Second, high level programming
languages could raise the abstraction level of code identifiers and,
thus, they could be closer to use cases possibly positively affecting
the results. Third, using a different use case notation could affect
the results too. Fourth, in case of the similarity based on relations
between issues and commits, a change management system other
than Github could affect the results, too. Also, processing more
issues of other projects could improve the results.

7. Discussion

The methods of identifying use cases in source code does not provide
sufficiently precise results for automatic use case driven remodular-
ization. As a result, an expert still has to be involved in selecting
a relevant implementation to achieve use case driven remodular-
ization. However, the identified implementation and generation of
use case modules greatly helps with remodularization) *|Having the
possibility to see another perspective of software according to use
cases improves source code comprehension and maintenance [3H5]].
The success of our method strongly depends on issues and
commits assigned to them. It could help to have a convention,
that would enforce to include which use case step is related to
which issue in its description. It would also help if use case driven
modularization was employed in source code from the beginning.
This would improve the success of our method significantly since
whole sentences from code would be matched with use case steps.
Even if the methods of identifying use cases in source code would
be precise enough, in their current implementation, calculating
similarity for only one use case takes an hour, which makes them
unsuitable for a continuous automated code remodularization.

8. Related Work

There are three broader areas of research related to our work:
recovering traceability links, similarity between natural language
and code, and use case based code remodularization. As far as the
similarity between text and code is concerned, a semi-automatic
methods of use case identification in code were reported [19} 126].
The methods are based on generating execution traces according
to a static code analysis. However, an expert has to be involved in
order to assign the execution traces to actual use cases.

Recovering traceability links among software artifacts was
deeply studied before. For example, there are approaches using
latent semantic indexing [14] or other information retrieval methods,
such as vector space model and probabilistic network model, em-
ploying ontologies [27]], or Wikipedia [13]. Our work differs from
these approaches because we employ issues and commits to find

14 The input source code is available at github.com/useion/code-uc-synon-
ident/tree/master/examplem/implementation.

The output source code after remodularization is available at
github.com/useion/remodularize/tree/master/out.

specific relations between use cases and source code. For this, we
create specific sentences from source code and compare them by
different similarity calculation algorithms.

Automatic identification of traceability links is concurrent re-
search problem. Therefore, a human expert is still necessary to
identify traceability links, as our study showed, too. Involving an
expert at early stages or after the identification of traceability links
was studied before [28]. Our approach also requires manual review
of identified relations.

There are several approaches capable of determining the sim-
ilarity of sentences. Some of them, such as Jaccard, Cosine and
Dice’s approach [23]], the semantic similarity toolkit [22]], or the
similarity based on semantic nets and corpus statistics [10], treat the
similarity at the lexical level. More recent approaches employ the
combination of syntactic, lexical, and semantic similarity [2]. The
experience from detecting inflected forms of last names [25] might
be applicable as well if the approach is to be extended to synthetic
languages. In our approach, we used Levenshtein’s distance and
determining sentence similarity based on semantic nets and corpus
statistics [[10]].

In the method of similarity measurement between code frag-
ments [29], the similarity is measured according to the semantic
relatedness of corresponding textual descriptions obtained from
StackOverflow. The method is correct approximately up to 85%. Al-
though this method is successful in determining program similarity,
this is different from finding similarity between natural language
and code. However, the idea can be used to improve the results of
our method.

In the semi-automatic method of code remodularization accord-
ing to features [[17]], the features have to be identified and execution
traces have to be recorded at program run time manually. Conse-
quently, a tool moves classes to packages that represent the corre-
sponding features. However, this method requires a considerable
human effort. This method organizes code into packages, but not at
the granularity of use case steps as we do.

9. Conclusion and Challenges

In this paper, we propose an approach of employing issues and
commits for in-code sentence based use case identification and
remodularization. The approach aims at providing use case based
perspective on the existing code. The sentences of use case steps
are compared to sentences of issue descriptions, while the sentences
generated from the source code of issue commits are compared
to sentences generated from the corresponding methods in source
code in order to quantify the similarity between use case steps
and methods in source code using different similarity calculation
algorithms. We evaluated the approach on a study of the OpenCart e-
shop application employing 16 use cases. The approach achieved the
recall of 3.37% and precision of 75%. The success of the approach
strongly depends on issues and commits assigned to them.

We find multiple points to be challenging. One of them is raising
the recall and precision of the presented approach in order to improve
use case identification in source code. This could be achieved by
covering more sentence types as they are identified in source code,
but embracing some sentence types might actually deteriorate results.
Another challenge is in decreasing the time needed to calculate the
similarity. Finally, it could also help if developers could write use
case expressions in issue descriptions and represent use cases in
code, which is not trivial to achieve.
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