
Development Environment for Literal
Inter-Language Use Case Driven Modularization

Michal Bystrický Valentino Vranić
Institute of Informatics and Software Engineering

Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava

Ilkovičova 2, Bratislava, Slovakia
{michal.bystricky,vranic}@stuba.sk

Abstract
Commonly, during programming the code related to use cases be-
comes scattered across different modules and at the same time the
code related to different use cases becomes tangled. This way,
it is hard to follow the intent, which is otherwise well compre-
hensible in use cases. In this paper, we demonstrate a develop-
ment environment for literal inter-language use case driven mod-
ularization. The environment enables to preserve use cases and
their steps and have each use case text and related code focused
in one file. For this, code instrumentation at three levels is in-
volved: continuous processing, preprocessing, and execution. The
approach itself requires also execution control provided by a ded-
icated framework. Many aspects of the program can be controlled
directly from the use case text. At the same time, it is compre-
hensible to a wide range of stakeholders. A layered 3D layout of
the use case dependencies is provided in the environment (https:
//bitbucket.org/bystricky/literal-use-cases, https://www.
youtube.com/watch?v=R4ArqH4ZdgI).

Categories and Subject Descriptors D.2.1 [Software Engineer-
ing]: Requirements/Specifications—Languages; D.2.6 [Software
Engineering]: Programming Environments; D.2.10 [Software En-
gineering]: Design; D.3.4 [Programming Languages]: Processors—
Preprocessors

General Terms Design, Documentation, Languages

Keywords use case, modularization, flow of events, intent, DCI,
aspect-oriented programming

1. Introduction
Commonly, during programming the code related to use cases be-
comes scattered across different modules and at the same time the
code related to different use cases becomes tangled. This way, it is
hard to follow the intent, which is otherwise well comprehensible
in use cases [15]. Moreover, modern software systems are rarely

developed in one language. For example, in web applications dif-
ferent software languages are used, some of which serve the pur-
pose of expressing the application logic and are usually referred
to as programming languages, while other, markup languages are
used to express the user interface to be rendered by web browsers.

Attempts to modularize code according to use cases [6, 9] have
demonstrated that this is not fully achievable without introduc-
ing some kind of code instrumentation. We proposed literal inter-
language use case driven modularization [3] that involves only as
much of code instrumentation as necessary to achieve literal use
case modularization while allowing for this to be balanced with dif-
ferently modularized code as desired.1 Thus, the approach is non-
invasive and adaptable. Here, we present our literal inter-language
use case driven modularization development environment.2

Section 2 presents briefly literal inter-language use case driven
modularization. Section 3 describes the role of the use case text.
Section 4 explains how are use case steps implemented. Section 5
discusses the related work. Section 6 concludes the paper.

2. The Approach in a Nutshell
In our approach, each use case is maintained in a separate file writ-
ten in the programming language that plays the role of the bearing
language. In our current implementation, it is JavaScript. However,
we have successfully experimented with Java as the bearing lan-
guage. Although the file itself could play the role of a module, we
have chosen to use classes for this. Thus, each use case is imple-
mented within a class (referred to as use case class further).

The use case text is placed at the top of the file as a comment.
The Markdown markup language is used to denote the structure of
the use case text. Cockburn’s use case notation [5] is employed. The
use case text is comprehensible to a wide range of stakeholders,
but it also plays an active role in the program. All three use case
relationships—include, extend, and generalization/specialization—
can be expressed directly in the use case text and without the need
to use the actual code. Use case step parameters can be expressed
in the use case text, too.

The use case text is followed by the actual use case step imple-
mentation. Each use case step is implemented as a use case class
method (referred to as use case step method further). Some of the

1 While we rely on some aspects of our approach presentation as provided
in our LaMOD’16 workshop paper [3], our focus here is on the technical
aspects of the supporting development environment not covered by the
LaMOD’16 workshop paper.
2 See https://bitbucket.org/bystricky/literal-use-cases
(download) and https://www.youtube.com/watch?v=R4ArqH4ZdgI
(video demonstration).

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

MODULARITY Companion’16, March 14–17, 2016, Málaga, Spain
c© 2016 ACM. 978-1-4503-4033-5/16/03...

http://dx.doi.org/10.1145/2892664.2893465

12

https://bitbucket.org/bystricky/literal-use-cases
https://bitbucket.org/bystricky/literal-use-cases
https://www.youtube.com/watch?v=R4ArqH4ZdgI
https://www.youtube.com/watch?v=R4ArqH4ZdgI
https://bitbucket.org/bystricky/literal-use-cases
https://www.youtube.com/watch?v=R4ArqH4ZdgI

application logic is programmed in the bearing language, but other
languages, including markup languages to express the user inter-
face, can be used, too. For this, each such fragment is embedded
into the bearing language code using comments. A fragment actu-
ally represents a virtual file whose name is provided after the open-
ing comment symbol.

Code instrumentation at three levels is involved: continuous
processing, preprocessing, and execution. Continuous processing
ensures all equally named virtual files are kept the same by propa-
gating the changes to any one of them to all other ones.

In preprocessing, virtual files are merged before the code can
be processed further by the corresponding common language tools
(compiled and executed or interpreted, depending on the language).
Also, the use case text is transformed into an internal form, the
input parameters are included in the actual use case step code,
use case relationships are translated into code, and the predefined,
generic main method necessary as a starting point for the applica-
tion is copied.

The execution of the processed and preprocessed code is con-
trolled by the framework. In this, the framework relies on the inter-
nal form of the use case text generated by the preprocessor. Indi-
vidual use cases are activated from the user interface controls.

Our development environment adopts a typical integrated de-
velopment environment layout with a web based user interface. In
addition to a code editor, file browser, code inspector, and console
output, it provides also a layered 3D layout of the use case depen-
dencies (see the next section). The server side is implemented in
JavaScript and uses the Node.js and Express.js frameworks. The
client side is written in JavaScript with the AngularJS framework
and Twitter Bootstrap, a CSS framework. CodeMirror is used as a
code editor. The layered 3D layout is implemented in Three.js, a
WebGL based JavaScript library. The internal form of the use case
text is in JSON. We used the environment to develop 25 use cases
of a real web application [3].

3. Writing the Use Case Text
Here is an example of the use case text part of a use case imple-
mentation in our development environment:

/**
* Usecase Show Articles
* =====================
*
* A user wants to display the list of articles.
*
* Actors
* ------
* User: any user visiting our site
*
* Triggers
* --------
* When the "saving article" extension point is

reached
*
* Main success scenario
* ---------------------
* 1. User selects to show articles
* 2. System displays articles
*
* Postconditions
* ---------------
* User can see articles.
*/

As can be seen, the use case text is partitioned into the sections
according to Cockburn’s notation. The main part in each use case
is its main success scenario. The steps are used to form the names
of use case step methods in the camel case format (omitting the
actor). This is used to bind use case steps to their implementation
(explained in the next section).

Use case steps can have input parameters that are typically
bound to user interface controls in their implementation. However,
use case steps serve a more sophisticated purpose: to express the
include relationship between use cases (which can be visualized in
a layered 3D layout as depicted in Figure 1). For this, the Include
keyword with the use case name as a parameter can be used, e.g.:

7. Include ’Show articles’.

Alternatively, if the use case step implementation is omitted, the use
case name can be provided right after the actor name (the notation
is not case sensitive):

7. User show articles.

Figure 1. The layered 3D layout of the use case dependencies.

Technically, each include relationship can be expressed as an
extend relationship. For this, an extension point has to be exposed
instead of invoking the corresponding use case —in this case Show
Articles—directly:

∗ Extension points
∗ −−−−−−−−−−−−−−−−
∗ ’saving article’: step ’6.’

The Show Articles use case would be set to be activated upon
reaching this extension point:

∗ Triggers
∗ −−−−−−−−
∗ When the ’saving article’ extension point is reached

Only parts of the use case text are active. For example, the
trigger description is scanned by the preprocessor for the extension
point string and a string in simple quotation marks. The rest is
ignored. We continue experimenting with different forms that the
use case text can take. While we are interested in improving its
expressiveness, we strive for the flexibility in its syntax. Its relaxed
form enables to let developers use their own style of expressing
use cases making an illusion that the development environment
understands whole expressions while it effectively picks out the
essential and leaves out the rest.

4. Use Case Step Coding
The use case text is followed by the actual step implementation.
The names of use case step methods are formed by transforming the

13

use case step text into the camel case format (omitting the actor).
This is used to bind use case steps to their implementation.

The step implementation gathers all the code fragments of each
step. Each code fragment in the step implementation may be in
a different programming language. For example, the code for the
second step of the Show Articles use case is written in the bearing
language JavaScript and two other languages, PHP and HTML:

this.displaysArticles = function (done) {
/** Partial model/Article.php
<?php
class Article {
public $title;
public $content;
public static function find() { ... } }

*/
/** Partial controler/getArticles.php
<?php
require ’Article.php’;
echo json_encode(Article::find());

*/

var _this = this;
get(this.metadata.pathDir+’/getArticles.php’, function (

data) {
var articles = JSON.parse(data);

/** Partial view/articles-list.html
{% for(var i=0, article; article=o.articles[i

]; i++){ %}
<div class="article" data-id="{%=i%}">
<h3>{%=article.title%}</h3>
<p>{%=article.content%}</p>

</div>
{% } %}

*/

get(_this.metadata.pathDir+’/articles.html’, function (
data) {

var gen = tmpl(data, {articles: articles});
document.getElementById(’content’).innerHTML= gen;

});
});

}

Each language is maintained within one or more virtual files each
of which is in the form of a comment starting with the Partial
word followed by the virtual file path.

On file saving, the preprocessor extracts and merges virtual
files into real files based on their virtual file paths. How the code
in virtual files is merged is language dependent. For example,
the elements of the equally named classes in equally named PHP
virtual files would be merged into one resulting class. Consider the
step of the Add Article use case in which an article is being saved.
From the perspective of this use case, the article title, content, and
the actual save operation are the only things that matter, so the
corresponding partial class looks as follows:

/** Partial Article.php
<?php
class Article {
public $title;
public $content;

public function save() { ... }
}

*/

The Review Article use case contains a step where an article
is obtained by its ID. This is a different perspective on the same
Article class:

/** Partial Article.php
<?php
class Article {
public static function getById($id) { ... }

}
*/

The preprocessor merges these two virtual files:

<?php
class Article {
/* Fragment Add Article */
public $title;
public $content;
public function save() { ... }

/* Fragment Review Article */
public static function getById($id) { ... }

}

As can be seen, use cases are traceable from the generated code,
though developers normally do not get in touch with it. This may
be used in refactoring conventional code into the code modularized
by use cases.

5. Related Work
Our development environment is related to several other experi-
mental development environments. Object Teams [8] enables to
program with roles and their bundles called teams. Teams gather
partial classes in order to create specific functionality, which is sim-
ilar to our partial classes bundled into use case classes, but there are
no indications that Object Teams support use case steps.

The ReDSeeDS development environment [16] enables to trans-
form use cases written in a requirements specification language
called RSL into UML models and Java code. This is somewhat
similar to the translation of the use case text into the internal form
to be used by the framework, but in our approach, the use case text
does not have to follow so rigid syntax. Furthermore, ReDSeeDS
does not preserve use cases in code (nor in UML models).

Dynamic code structuring [11] implemented within Sieve Source
Code Editor [10, 14] makes possible to have different perspectives
on code through an explicit concern representation. Use cases could
be one such perspective, but not at the level of individual use case
steps.

None of the mentioned development environments supports
multiple languages. In general, our approach, with its roots in our
prior work [2], is related to DCI [6, 13], aspect-oriented program-
ming with use cases [9], and subject-oriented programming [12]
and symmetric aspect-oriented composition in general [4, 7], which
is covered elsewhere [3].

6. Conclusions and Challenges
The development environment for literal inter-language use case
driven modularization was demonstrated in this paper. The environ-
ment enables to preserve use cases and their steps and have each use
case text and related code focused in one file. Code instrumentation

14

at three levels is involved: continuous processing, preprocessing,
and execution.

Many aspects of the program can be controlled directly from
the use case text. At the same time, it is comprehensible to a wide
range of stakeholders. This brings us close to the ideas of end-user
software engineering [1]. By gradually transferring the control to
the use case text, we can make the whole approach even more ac-
cessible to non-professionals. To improve working with extensive
applications, the layered 3D layout of the use case dependencies
could be made editable and presented using stereoscopic means.

Acknowledgments
The work reported here was supported by the Scientific Grant
Agency of Slovak Republic (VEGA) under grants VG 1/0734/16
and VG 1/0774/16. It is also a partial result of the Research &
Development Operational Programme for the project Research of
Methods for Acquisition, Analysis and Personalized Conveying of
Information and Knowledge, ITMS 26240220039, co-funded by
the ERDF.

References
[1] M. M. Burnett and B. A. Myers. Future of end-user software engineer-

ing: Beyond the silos. In Proceedings of Future of Software Engineer-
ing, FOSE 2014, Hyderabad, India, 2014. ACM.

[2] M. Bystrický and V. Vranić. Preserving use case flows in source code.
In Proceedings of 4th Eastern European Regional Conference on the
Engineering of Computer Based Systems, ECBS-EERC 2015, Brno,
Czech Republic, 2015. IEEE CS.

[3] M. Bystrický and V. Vranić. Literal inter-language use case driven
modularization. In LaMOD’16: Language Modularity À La Mode,
Modularity 2016, Málaga, Spain, 2016. ACM.

[4] J. Bálik and V. Vranić. Symmetric aspect-orientation: Some practical
consequences. In Proceedings of NEMARA 2012: International Work-
shop on Next Generation Modularity Approaches for Requirements
and Architecture, at AOSD 2012, Potsdam, Germany, 2012. ACM.

[5] A. Cockburn. Writing Effective Use Cases. Addison-Wesley, 2000.

[6] J. Coplien and G. Bjørnvig. Lean Architecture for Agile Software
Development. Wiley, 2010.

[7] W. H. Harrison, H. L. Ossher, and P. L. Tarr. Asymmetrically vs. sym-
metrically organized paradigms for software composition. Technical
Report RC22685, IBM Research, 2002.

[8] S. Herrmann. A precise model for contextual roles: The programming
language ObjectTeams/Java. Applied Ontology, 2(2):181–207, 2007.
ISSN 1570-5838.

[9] I. Jacobson and N. Pan-Wei. Aspect-Oriented Software Development
with Use Cases. Addison-Wesley, 2004.

[10] M. Nosál’. Sieve source code editor. https://github.com/
MilanNosal/sieve-source-code-editor, 2015.

[11] M. Nosál’, J. Porubän, and M. Nosál’. Concern-oriented source
code projections. In Proceedings of 2013 Federated Conference on
Computer Science and Information Systems, FedCSIS 2013, Kraków,
Poland, 2013. IEEE.

[12] H. Ossher, W. Harrison, F. Budinsky, and I. Simmonds. Subject-
oriented programming: Supporting decentralized development of ob-
jects. In Proceedings of 7th IBM Conference on Object-Oriented Tech-
nology, 1994.

[13] T. Reenskaug and J. O. Coplien. The DCI architecture: A new vision
of object-oriented programming. Artima Developer, 2009. URL
http://www.artima.com/articles/dci_vision.html.

[14] M. Sulír and M. Nosál’. Sharing developers’ mental models through
source code annotations. In Proceedings of 2015 Federated Confer-
ence on Computer Science and Information Systems, FedCSIS 2015,
Łódź, Poland, 2015. IEEE.

[15] V. Vranić, J. Porubän, M. Bystrický, T. Frt’ala, I. Polášek, M. Nosál’,
and J. Lang. Challenges in preserving intent comprehensibility in
software. Acta Polytechnica Hungarica, 12(7):57–75, 2015.

[16] M. Śmiałek, N. Jarzębowski, and W. Nowakowski. Translation of use
case scenarios to Java code. Computer Science, 13(4):35–52, 2012.

15

https://github.com/MilanNosal/sieve-source-code-editor
https://github.com/MilanNosal/sieve-source-code-editor
http://www.artima.com/articles/dci_vision.html

	Introduction
	The Approach in a Nutshell
	Writing the Use Case Text
	Use Case Step Coding
	Related Work
	Conclusions and Challenges

