
Animating Organizational Patterns
Tomáš Frt’ala and Valentino Vranić

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies

Slovak University of Technology in Bratislava, Bratislava, Slovakia
E-mail: tomas.frtala@stuba.sk, vranic@stuba.sk

Abstract—Organizational patterns are the key to a stepwise
adoption of agile and lean approaches and to a piecemeal
growth of agile and lean organization of work. However, their
text description is not easy to comprehend. In this paper, we
introduce our initial efforts towards establishing an approach
to animate organizational patterns as text adventure games.
Players pass through a series of scenes described using Erickson’s
conversational hypnosis language patterns in order to better
evoke their experience. The game scenario space is expressed
using UML state machine diagrams. The approach is presented
on adventure games we created for the Architect Also Implements
organizational pattern.

I. INTRODUCTION

Popularity of agile and lean approaches to software develop-
ment in general—and Scrum in particular—is still on the rising
curve for their flexibility and effectiveness while being close to
the natural human attitude towards work [1]. However, despite
vast efforts, there have been recurring difficulties in their
adoption. They are even being rejected at different levels of
organizational structure, including developers themselves. This
is paradoxical, since agile and lean bring more freedom and
involvement. Part of the reasons probably lies in not providing
practitioners, who often have been conditioned (i.e., trained)
to following heavyweight development processes, with an
opportunity to experience—and not merely understand—what
agile and lean are.

It is important to realize that agile and lean are actually
not new nor did they appear suddenly. On the contrary,
they are based on recurring patterns of organization that
have been around long before they have been qualified as
agile or lean. As Coplien and Harrison [2] showed, these
organizational patterns can be identified in successful projects
and presented in a concise, written form in a similar manner
as design patterns in software development [3] or patterns in
building architecture, where this idea has been first proposed
by Alexander [4]. Community of Trust, Hallway Chatter,
Architect Also Implements, and dozens of other organizational
patterns constitute their catalogue [2].

Organizational patterns are the key to a stepwise adoption of
agile and lean approaches and to a piecemeal growth of agile
and lean organization of work. They can be applied to correct
particular problems within an organization or to build a new
organization. Scrum has been expressed in terms of Coplien
and Harrison’s organizational patterns [5] and there is even an
ongoing work to define Scrum-specific patterns [6].

Having such pieces of experience in a condensed, apparently
ready to consume form, may seem to be sufficient. However,
this form is still an appeal to understand and not to experience,
so the problem of acceptance we mentioned at the beginning
remains. Agile games [7] attempt to overcome this problem
by providing an non-expensive way to experience organiza-
tional problems without requiring any knowledge of software
development, but consequently fail to relate to software de-
velopment reality [8] as making paper airplanes or balloon
blowing is quite distant from it.

In this paper, we introduce our initial efforts towards
establishing a more involving and comprehensible form of
presenting organizational patterns. The rest of the paper is
organized as follows. Section II analyzes the possibilities of
gaining experience through games as a way towards mastering
organizational patterns. Section III introduces our approach to
animating organizational patterns as text adventure games by
the means of an example. Section IV discusses the approach.
Section V points out work related to our approach. Section VI
concludes the paper.

II. GAINING EXPERIENCE THROUGH GAMES

It is really hard to cut through all those forces, principles,
and situations by which organizational patterns are typically
described. It is even harder if you are to apply what you read
in real life. Human nature requires experience. One way to
gain it without risking failure in a real setting is to employ
sociodrama in which participants can play the situation from
the perspective of different roles [2]. However, people may
be not willing to participate due to shyness or discomfort
from conflicts that, though played, do arise and may evoke
strong feelings among participants. Also, sociodrama is time
consuming and moreover requires time coordination of many
people.

A. Serious Games

One solution to the problems of employing sociodrama is
offered by virtual games where person can act without feeling
discomfort and as a bonus can be involved anytime in any
place. Using the game format is not new and has been applied
in learning software engineering under limited conditions [9],
agile software development [7], or lean approach [10], [11],
[12], [13]. Employing virtual reality in learning lean approach
has also been reported [14]. This type of game is known as
serious games. Apart from learning, serious games known as



human computation games are used to make people perform
certain work while perceiving this as a fun activity [15], [16],
[17].

B. Importance of Scenario

Although technical quality of the game is important, in
serious games, the scenario is crucial to the perception of the
situation by the user [18], [19]. If the scenario is involving,
players easily identify with the main character, as we all know
from popular games, despite simple graphics (recall Pacman)
or no graphics at all, as in text adventure games.

When mimicking a sociodrama by a serious game, the goal
is to make players feel the forces that drive the situation in
the underlying organizational pattern as if they have been
actually exposed to them. To achieve this, the scenario should
sufficiently emphasize moments specific to that situation.

C. Power of Imagination

Erickson’s conversational hypnosis [20] strives at utilizing
subject’s potential to induce a hypnotic trance and provide an
effective problem treatment. For this, Erickson used specific
language, in which Bandler and Grinder later identified sen-
tence patterns [21] (e.g., Cause-Effect, Implied Causative, or
Scope Ambiguity) that provided one of the cornerstones to
their approach known as neuro-linguistic programming. Er-
ickson’s hypnotic mastery assumed careful yet quick tailoring
of suggestions to each subject. However, there are attempts
or even businesses based on generalized utilization relying on
notions commonly perceived the same way by the majority of
people (e.g., Uncommon Knowledge,1 which offers recorded
hypnotherapy sessions that should fit most of the people).

We are dealing with software development professionals or
people that—though themselves not participating in program-
ming on a daily basis—have a good idea of how software is
developed and have been exposed to real critical situations
that arise during software development. Using right words
but avoiding binding to any specific programming languages
or other notations, one can create a general setting capable
of immersing a person being conditioned to software devel-
opment process by simply being exposed to the respective
environment into a desired fictional situation applicable to
such environment.

The power of imagination is huge and can substitute other
perceptions. For example, if someone says to you: “Your
program suddenly stopped functioning after you implemented
that new big algorithm,” your mind employs the imagination
and your memories and unfolds this condensed description into
a specific situation that comprises also your feelings related
to such situation. Thus, despite the description mentions no
programming language, you instantly fill in your own. Ac-
cordingly, you gain a feeling of being in specific program-
ming context, e.g., database development, mobile application
development, etc.

It is important to note that not all details are worked out in
your mind (e.g., what algorithm you are dealing with). That is

1http://www.uncommon-knowledge.co.uk/

not only unnecessary, but probably would just overwhelm your
mental capacity. The description merely makes allusions on
your experience and makes you recognize it. What is important
is that the situation is involving and you are eager to solve it.

III. ORGANIZATIONAL PATTERNS AS TEXT ADVENTURE GAMES

To ease their mastering, we propose to represent organiza-
tional patterns as adventure games. An adventure game is a
long-time known type of video game based on an involving
story rather than action (as opposed to arcade games). The
game consists of a number of scenes and the player as a
protagonist is supposed to successfully solve the tasks in all
or some of the scenes in order to finish the game.

The simplest form of realization of adventure games—
known as text adventure games—involves only textual scene
description and command line interface. This does not nec-
essarily constitute a disadvantage as the stress is put on the
game idea and puzzling tasks that often span over several
scenes. Considering our audience to be highly educated, we
assume that the textual description would be appropriate for
organizational pattern adventure games. Moreover, as can be
experienced from literary works, omitting direct graphical or
video representation provides an opportunity to readers to
develop their own representation they can more easily identify
with while still maintaining conformance with the writer’s
intent in essential aspects.

A. Creating Scenarios

As we explained in Section II-B, scenarios are of utmost
importance to the success of video games and in particular
text adventure games. Applied to organizational patterns, this
means attractive and involving scenarios have to be produced
to successfully realize them as text adventure games.

To produce such a scenario for a given organizational pat-
tern, one has to explore thoroughly it establishing its compre-
hension based upon the organizational pattern description and
own professional experience. Subsequently, one has to come
with one out of many possible situations fitting the pattern.
Although such a situation embraces some particular issues
(in order to appear as involving to players), these should be
avoided as much as possible using Erickson’s conversational
hypnosis language patterns to give the opportunity to players
to fill in their own details.

Erickson’s language patterns lead towards using expressions
that make players feel as if provided with a full situation
description, yet making them fill in the details coming from
their own experience with the organizational pattern instances
they encountered in real life or, in the absence of such
experience, at least makes them accept the description as their
own. Erickson’s language patterns can be constructed follow-
ing their general form [21], but they also come intuitively
from getting into the aforementioned attitude towards situation
description.

Each role in the organizational pattern should be elaborated
via a separate adventure game to allow players to experience
the organizational pattern from different perspectives. Each



such adventure game scenario can be described as a set of
scenes and transitions between them. UML state machine
diagrams can be used to capture scenarios (not intended to be
shown to players) with the scene description (to be shown to
players) prepared separately. The following sections elaborate
this further by the means of an example.

B. Architect Also Implements: Architect’s Perspective

To demonstrate our approach, we present an adventure game
for the Architect Also Implements organizational pattern [2].
This pattern puts the architect’s role in a direct and active
contact with program artifacts. This keeps architecture within
the reality of implementation while providing an opportunity
for “ordinary” developers to take part in it.

There are two key roles in this pattern: architect and
developer. It should be possible to play the game from
the perspective of each role separately. First, we will take
the architect’s perspective. Consider the UML state machine
diagram in Figure 1. States represent scenes, each of wich is
presented to the player in the form of text description, such
as the one in Figure 2.

Transitions between scenes are determined by triggers and
guards (introduced in square brackets as is common). Triggers
are expressed by events that represent conscious decisions
from the perspective of the player’s role, e.g., Adapt the
architecture document. After reading the scene description, the
player chooses one of the events.

Guards represent conditions beyond the player’s role per-
spective. These may come from the environment (Problems
have been found) or other roles (The architect joins you). The
game could be configured to allow the player to choose among
the guards in the same manner as with events, to let the game
make a random choice, or to always take the default choice
(without displaying the guards at all). Default choices (i.e.,
transitions) are marked by the �default� stereotype.

In case no conscious decisions is available to the player,
the generic Continue event is used. This means the player just
continues to the next scene. Of course, if there are guards on a
transition with the Continue event, the transition is determined
by the guards.

Let us walk through the adventure game corresponding
to the Architect Also Implements organizational pattern as
depicted in Figure 1. At the beginning of the game, you are
instructed to imagine extending the existing architecture (scene
S1; see also Figure 2). As an architect, you capture your vision
through the architecture document, but you encounter the
identified problems have bigger impact on the entire system
than you originally assumed.

Consider the first sentence of the scene description in
Figure 2. This is effectively Implied Causative, one of the
Erickson’s language patterns [21]. This sentence makes the
player infer the casual relationship between the meeting results
and being given a task to extend the architecture. Avoiding any
kind of explanation of this relationship and details in general
(such as what kind of the system is being developed, the
kind of architecture it is based upon, how is this architecture

expressed, etc.), makes the player develop his or her own
picture of the situation.

Getting on with our scenario, you and developers start
to implement according to the architecture document (scene
S2). However, you notice some problems (transition T2):
you are unable to keep the implementation aligned with the
architecture (scene S3; see also Figure 3). Initially, you decide
to override the architecture document, i.e., to make changes to
the implementation without reflecting them in the architecture
document. However, new problems arise and you decide to
adapt the architecture document (scene S4).

Let us stop at the first sentence of the scene description
in Figure 3. This is Cause-Effect, another Erickson’s language
pattern [21]. The sentence makes the player connect designing
and documenting architecture with realizing there are some
problems as if there is a causal relationship between the two
while—in reality—there is none. Or is there some after all?
The elusiveness of the relationship is actually an additional
allusion made upon what is the main idea of this organizational
pattern: creating an architecture deprived of the connection to
the real code brings problems. Avoiding any kind of explana-
tion of this relationship and details in general (what kind of
the system is being developed, the kind of architecture it is
based upon, how is this architecture expressed, etc.), makes
the player develop his or her own picture of the situation and
consequently better identify with it.

Continuing with our scenario, a developer comes asking
you about a particular problem in the implementation (scene
S5; see also Figure 4). This also might have happened earlier,
during your initial implementation efforts (transition T5).

If you decide to leave the implementation to developers
(transition T7), they may do their best to solve the problems,
but it may be counterproductive if developers create a solution
that overrids the architecture document without reflecting this
in the architecture document. By being indolent to technical
details, you will hardly be able to solve similar situations in
future (scene S9).

But if you decide to join the developer in implementation
(transition T6), you will be able to better understand the
problems in the context and see actual consequences of
your architecture and decisions. The developer will also gain
expertise from you (scene S6).

During the cooperation with the developer you may identify
errors in the architecture document (scene S7). These may vary
in importance. It is possible that the errors are a consequence
of previous bad decisions and implementation.

If the identified errors are serious, you decide that the imple-
mentation cannot continue without adapting the architecture
document (transition T10). However, now you know exact
technical reasons for the failure of your architecture (scene
S8).

You might also come to a solution not in accordance with
the architecture document. Subsequently, you decide to apply
it, i.e., to override the arcitecture document, and continue with
the implementation together with the developer (transition
T9). Nevertheless, during the implementation effort with the



Figure 1. Architect Also Implements from the architect’s perspective.

developer, yet another problem may arise (transition T8).
Consequently, if this is a serious problem, the only right way
of its solving, besides discussion and advising, is to adapt the
architecture document.

You may be busy enough with solving other problems
or doing some other work, or you even may lose interest.
So when you propose a solution overriding the architecture
document, you may just leave the implementation to the
developer (transition T11).

C. Architect Also Implements: Developer’s Perspective

Because the Architect Also Implements pattern is of concern
to developers, too, a separate adventure game should be pro-
vided to them. This also provides an opportunity to architects
to experience the developer’s role.

The game we devised for the developer’s role in the
Architect Also Implements organizational pattern is depicted
in Figure 5. In comparison to the architect, a developer has
fewer possibilities to influence the development process, so
the majority of transitions in the corresponding state machine
diagram are determined by guards, which—as we explained—
express the conditions beyond the player’s role perspective.

IV. DISCUSSION

In our approach to animating organizational patterns as
adventure games, we used only textual rendering of scenes.
Graphics, animated sequences, and video sequences can be
used alternatively or complementarily to textual rendering.
Another option is to employ virtual reality and thoroughly
simulate reactions of people, but this would be too costly.
Moreover, scenes would have to be fully elaborated leaving



After one of those meetings in which new functionality
is being agreed upon, you find yourself carrying out
the analysis of the prerequisites to extend the existing
architecture. The architecture has to accommodate the
new functionality.

To meet the requirements, you decide to study several
versions of the frameworks used in implementation. At
the same time, your mind starts shaping a vision of the
architecture.

You document your findings and the vision in the archi-
tecture document double checking its consistency.

Having finished, you introduce the new architecture to
developers.

→ Continue

Figure 2. Scene S1, Creating the architecture document.

As you design and document the architecture extension,
you realize that the identified problems have bigger im-
pact on the entire system than you originally assumed.

Since you are sure the architecture can’t be incorrect—
you’ve created it yourself and double checked it—you
search for possible solutions of these problems without
considering to adapt the architecture.

→ Continue

Figure 3. Scene S3, Solving the problems with the implementation.

almost nothing to player’s imagination, which plays a signif-
icant role in our approach.

As we saw in the previous section, conditions determining
transitions to scenes which are beyond the player’s role
perspective are manipulable by the player, decided randomly,
or default transitions are triggered. These conditions may be
sourced in the environment itself, such as a program failure,
or in other roles, such as a boss deciding to engage another
developer. The conditions sourced in other roles could be
decided in a more sophisticated way using the agent-oriented
approach, which would enable a more elaborated interaction
between the player and these roles. This is also related to the
possibility of having a multiplayer game instead of single-
player games as it is currently in our approach. Other players
could be humans instead being computer generated.

Different adventure games for the same organizational pat-
tern are possible. These may be based on variant scenarios, but
also may come from cultural and linguistic differences. Also,
we consider separate adventure games for each organizational
pattern. However, organizational patterns actually form pattern
languages and a continuous adventure game reflecting the

A developer approaches you to discuss the implementa-
tion problems.

The developer was unable to follow your architecture.
The solution seemed viable, but the technologies don’t
permit that kind of organization. Moreover, the developer
is afraid of infringing compatibility with new framework
versions.

You. . .

→ feel responsible for the whole system and moreover
the technical solution to the architecture problem puzzles
you. You decide make your time and join the developer
in the implementation effort.

→ consider your architecture to be correct and the
problems seem to you as an implementation detail. You
explain your intent with the architecture and leave the
implementation to the developer.

Figure 4. Scene S5, Discussing the implementation with the developer.

whole pattern language could be devised, too. Still, individual
pattern games have an advantage of being readily accessible
to target a problem at hand, requiring significantly less time
than “playing” the whole pattern language.

V. RELATED WORK

Attempts have been made to evaluate and improve different
pattern forms [22]. However, these forms remain passive in
their essence as opposed to interactivity we strive for.

A notation similar to activity diagrams or BPMN has been
used to express Scrum processes identified in real organi-
zations [23]. Patterns are then identified or reinforced by
rearranging corresponding activities. In this sense, our pattern
state machine diagrams—albeit not directly in their current
form—could be used to ameliorate this process or even to
automate it.

Learning organizational patterns from a simulated expe-
rience as opposed to learning them from text description
recalls establishing a correct perception of the matter being
taught by preventing the divergence of the school model
and intuitive model, which has been identified as a major
problem in teaching by Mahajan in his course on teaching
methodology [24] (see Mahajan’s lecture 3 in particular).

VI. CONCLUSIONS AND FURTHER WORK

We explained our initial efforts towards establishing an
approach to animate organizational patterns as text adventure
games. Players pass through a series of scenes described using
Erickson’s conversational hypnosis sentence patterns in order
to better evoke their experience. Each role in the organizational
pattern is elaborated via a separate adventure game. The
game scenario space is expressed using UML state machine
diagrams.



Figure 5. Architect Also Implements from the developer’s perspective.

The approach is presented on adventure games we designed
for the Architect Also Implements organizational pattern.
Sample scenes (Figure 2, 3, and 4) in the form intended to
be displayed to players are included to illustrate the kind of
language we assume appropriate for this (Section III).

In Section IV we outlined several interesting directions for
further work. Our next steps will be to express a greater
number of organizational patterns as text adventure games and
to evaluate efficiency of this representation with practitioners.
These comprise our graduate students taking the course on

team software development and our industrial partners in-
volved in assisting their clients in switching to Scrum.

ACKNOWLEDGMENTS

The work reported here was supported by the Scientific
Grant Agency of Slovak Republic (VEGA) under the grant
No. VG 1/1221/12.

This contribution/publication is also a partial result of the
Research & Development Operational Programme for the
project Research of Methods for Acquisition, Analysis and



Personalized Conveying of Information and Knowledge, ITMS
26240220039, co-funded by the ERDF.

REFERENCES

[1] V. Vranić, “Promoting natural human attitude towards work: Scrum,”
in Proceedings of Konferencija Mreža 2013 – Internet u edukacionom i
poslovnom okruženju (Conference Mreža 2013 -– Internet in Educational
and Business Environment), Valjevo, Serbia, 2013, pp. 8–12.

[2] J. O. Coplien and N. B. Harrison, Organizational Patterns of Agile
Software Development. Prentice Hall, 2004.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[4] C. Alexander, The Timeless Way of Building. University of Oxford
Press, 1979.

[5] Scrum Pattern Community, “Published patterns,” https://sites.google.
com/a/scrumplop.org/published-patterns/home, 2015.

[6] J. Sutherland, J. Coplien, J. Østergaard, G. Bjørnvig, and D. Friis,
“Scrum as organizational patterns,” https://sites.google.com/a/
scrumorgpatterns.com/www/, 2011.

[7] B. Scharlau, “Games for teaching software development,” Proceedings
of 18th ACM conference on Innovation and technology in computer
science education, 2013.

[8] M. Paasivaara, V. Heikkilä, C. Lassenius, and T. Toivola, “Teaching
students scrum using LEGO blocks,” Companion Proceedings of 36th
International Conference on Software Engineering – ICSE Companion
2014, pp. 382–391, 2014.

[9] A. A. Deshpande and S. H. Huang, “Simulation games in engineering
education: A state-of-the-art review,” Computer Applications in Engi-
neering Education, vol. 19, no. 3, pp. 399–410, Sep. 2011.

[10] H. McManus and E. Rebentisch, “Experiences in simulation-based
education in engineering processes,” 2008 38th Annual Frontiers in
Education Conference, pp. S1C–21–S1C–26, Oct. 2008.

[11] L. Zhou, Y. Xie, N. Wild, and C. Hunt, “Learning and practising
supply chain management strategies from a business simulation game: A
comprehensive supply chain simulation,” Simulation Conference, 2008.

[12] I. D. Silva, A. R. Xambre, and R. B. Lopes, “A simulation game
framework for teaching lean production,” International Journal of
Industrial Engineering and Managemen, vol. 4, no. 2, pp. 81–86, 2013.

[13] A. G. Ramos, M. P. Lopes, and P. S. Avila, “Development of a platform
for lean manufacturing simulation games,” IEEE Revista Iberoameri-
cana de Tecnologias del Aprendizaje, vol. 8, no. 4, pp. 184–190, Nov.
2013.

[14] A. Gamlin, P. Breedon, and B. Medjdoub, “Immersive virtual reality
deployment in a lean manufacturing environment,” Interactive Technolo-
gies and Games, pp. 51–58, 2014.

[15] J. Šimko and M. Bieliková, Semantic Acquisition Games: Harnessing
Manpower for Creating Semantics. Springer, 2014.

[16] J. Šimko, M. Tvarožek, and M. Bieliková, “Human computation: Im-
age metadata acquisition based on a single-player annotation game,”
International Journal of Human-Computer Studies, vol. 71, no. 10, pp.
933–945, 2013.

[17] ——, “Semantics discovery via human computation games,” Interna-
tional Journal on Semantic Web and Information Systems (IJSWIS),
vol. 7, no. 3, pp. 23–45, 2011.

[18] J. P. Gee, “What video games have to teach us about learning and
literacy,” Computers in Entertainment, vol. 1, no. 1, p. 20, Oct. 2003.

[19] C. Hartog, “Scenario design for serious gaming – guiding principles for
the design of scenarios and curricula in military job oriented training,”
Master’s thesis, Delft University of Technology, 2009.

[20] M. H. Erickson and E. L. Rossi, Hypnotherapy: An Exploratory Case-
book. Irvington Publishers, 1979.

[21] R. Bandler and J. Grinder, Patterns of the Hypnotic Techniques of Milton
H. Erickson, M.D. Meta Publications, 1975, vol. I.

[22] M. Wieck, “Patterns: Lust for glory,” in Proceedings of 14th
Annual Conference of the National Advisory Committee on Computing
Qualifications, NACCQ 2001, July 2001, pp. 145–151. [Online].
Available: http://www.citrenz.ac.nz/conferences/2001/145.pdf

[23] X. Meng, Y. Wang, L. Shi, and F. Wang, “A process pattern language
for agile methods,” in Proceedings of 14th Asia-Pacific Software En-
gineering Conference, APSEC 2007. Nagoya, Japan: IEEE Computer
Society, Dec. 2007, pp. 374–381.

[24] S. Mahajan, “Teaching college-level science and engineering,” Mas-
sachusetts Institute of Technology: MIT OpenCourseWare, http://ocw.
mit.edu/5-95js09, 2009.


