
Realizing Changes by Aspects at the Design Level
Valentino Vranić and Branislav Kuliha

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies

Slovak University of Technology in Bratislava
Ilkovičova 2, Bratislava, Slovakia

vranic@stuba.sk, kobliha@centrum.sk

Abstract—The cost of a change is high, but changes are
an inevitable part of software development lifecycle, which
comes to be recognized under a more general term: software
evolution. To mitigate this problem, an approach to aspect-
oriented change realization has been proposed earlier based on
the idea of representing change by aspect. In many cases, software
development relies on graphical modeling, mainly UML, and thus
a legitimate question is how aspect-oriented change realization
could be supported at the modeling level. This paper proposes
an approach to achieve this based on Theme, a comprehensive
approach to aspect-oriented analysis and design. One of the
results of the work reported here is a catalog of change type
models for the domain of web applications comprising the models
of eleven specification change types and seven implementation
change types. Apart from the examples presented in the paper,
the approach was successfully applied to a real web mail system.
As no dedicated Theme modeling tool is available, a UML profile
for both analytical (Theme/Doc) and design part (Theme/UML)
of the Theme approach has been designed and implemented in
IBM Rational Software Architect.

Index Terms—software evolution; change realization; aspect-
oriented programming; software modeling; Theme; UML; pa-
rameterized types

I. INTRODUCTION

The cost of a change is high, but changes are an inevitable
part of software development lifecycle, which comes to be
recognized under a more general term: software evolution. To
mitigate this problem, an approach to aspect-oriented change
realization has been proposed earlier [1]–[4] based on the idea
of representing change by aspect [5]. The idea also appeared
elsewhere independently [6], [7].

Aspect-oriented programming appears here as a logical
choice due to its capability to affect code in a declarative man-
ner. Plugging in and unplugging changes, or even their transfer
to other programs, suddenly becomes possible. In many cases,
software development relies on graphical modeling, mainly
UML, and thus a legitimate question is how aspect-oriented
change realization could be supported at the modeling level.
This paper proposes an approach to achieve this based on
Theme, a comprehensive approach to aspect-oriented analysis
and design.

The rest of the paper is organized as follows. Section II
presents the background of the aspect-oriented change real-
ization approach. Section III introduces the position of the
Theme approach to aspect-oriented analysis and design within
the work presented here. Section IV explains the approach

to modeling specification change types using Theme/Doc.
Section V explains the approach to modeling implementation
change types using Theme/UML. Section VI presents the eval-
uation results. Section VII discusses related work. Section VIII
concludes the paper.

II. ASPECT-ORIENTED CHANGE REALIZATION

Aspect-oriented change realization [1]–[4] is an approach
to treating changes as separate concerns. Rooted in the early
idea of representing changes as aspects relying on aspects’
intrinsic capability of affecting other code without having to
change this code as such [5], the approach has developed to
incorporate reasoning about changes at two levels: specifica-
tion and implementation (called domain specific and generally
applicable in the prior work).

Although the idea is applicable in other contexts, probably
the best motivating example is so-called software customiza-
tion. In customization, a general application is being adapted
to the client’s needs by a series of changes [3]. With each
new version of the base application, all the changes have to be
reapplied to it. If it would be possible to maintain changes as
separate modules, they could be either directly applied to the
new main version or this could be done with some adaptation
(see Figure 1).

Fig. 1. The customization problem (adopted from our earlier work [8], [9]).

To realize changes using aspect-oriented programming ef-
fectively, a two-level aspect-oriented change realization model
has been proposed [1], [3]. Consider a change request con-
taining the requirement to add a backup SMTP server to
ensure delivery of the notifications to users as a part of

vranic
IEEE (C) 2015



the customization of the affiliate marketing software [3],
[8]. Technically speaking, each time the affiliate marketing
software needs to send a notification, it creates an instance
of the corresponding class which handles the connection to
the SMTP server. In more general terms, an SMTP server is
a kind of a resource that needs to be backed up. Abstracting
from the context (SMTP server), this may be identified as a
kind of the Introducing Resource Backup specification change
type. There is an effective way of implementing this type of
change expressed as an implementation change type called
Class Exchange. Each implementation type is accompanied
with a code scheme that needs just to be adapted to the context.
A catalog of change types that have been identified in the
web application domain including the correspondence between
them is available [3].

III. EMPLOYING THE THEME APPROACH

Many software development projects employ graphical soft-
ware modeling, mainly UML. With respect to this, there is
a need to enable aspect-oriented change realization at the
modeling level. The Theme approach [10] is an aspect-oriented
modeling approach based around the notion of theme that
represents a general perception of a concern. The Theme
approach works with themes from the very start by employing
a sort of their automatic identification in requirements and
expressing them in a form of a network of relationships,
ending with the UML-based design of individual themes with
a clear transition to implementation. Here, we are interested
in applying the two notations the Theme approach brings—
Theme/Doc and Theme/UML—whose relevant details will be
explained as needed in the following sections.

The general idea of the approach proposed here is to use
Theme/Doc to express specification change types on one side,
and to use Theme/UML to express implementation change
types on the other side. These will form a catalog of changes
in much the same way as with the original, code based aspect-
oriented change realization.

Applying the catalog assumes comparing the application
model to the cataloged specification change types. Conse-
quently, it appears that the model to be compared has to be a
Theme/Doc model. However, this is somewhat relaxed since
a Theme/Doc model can be transformed into the graphical
part of a use case model [11], and use cases are widely used
in modern software development. In fact, as is going to be
explained later, we employed a UML CASE tool and the
Theme/Doc themes were actually represented as stereotyped
use cases. For the purposes of this paper, we will stick to the
assumption of the pre-existence of the Theme/Doc model of
the target application.

The realization of a change assumes applying the imple-
mentation change type that came out of the Theme/Doc based
change analysis, which is analogical to the code based aspect-
oriented change realization example of which was given in
the previous section. Logically, the best way to go is to have
the target application designed in Theme/UML. As in reality
this is not going to be very probable, the fastest way to

obtain a Theme/UML model from a common UML model
is to consider the whole target application UML model as one
theme. Everything else would require some form of refactoring
to partition the model into themes, and this is beyond the scope
of this paper.

IV. MODELING SPECIFICATION CHANGE TYPES

Given a change request, it is necessary to decompose it
into one or more actual changes. Suppose we have a simple
web mail system embracing user registration, sending and
receiving e-mail, and necessary administration functionality.
Consider a change request that states that the administrator
should be able to block and unblock account from the accounts
view (CHR03). This change request actually consists of two
changes. One change follows directly from the change request:
a new column has to be added to the list of accounts. This
column should contain a control element to call appropriate
service to block or unblock selected user’s account. Another
purpose of this column is to show the user’s account status.
The other change is implicit: check whether the user is blocked
during the logging in since blocked users mustn’t be allowed
to log in.

We represent these two changes formally as two require-
ments, as can be seen in Figures 2 and 3. As no dedicated
Theme modeling tool is available, a UML profile for both
analytical (Theme/Doc) and design part (Theme/UML) of the
Theme approach has been designed and implemented in IBM
Rational Software Architect (IBM RSA). A requirement is
there represented as a stereotyped UML artifact.

Fig. 2. Add Block/Unblock Column to Accounts List: the theme–relationship
view.

Fig. 3. Check User Blocked: the theme–relationship view.

Next, we identify concerns, i.e., themes, implied by each
requirement. Themes, displayed as rhomboids, are in our IBM
RSA models represented as stereotyped use cases (as has
been already mentioned in the previous section). They are
connected to requirements by associations. How to identify
relevant themes from requirements goes beyond this paper, but



a simplified approach is to extract all concerns that may stand
on their own from the requirement. In this, it is a good idea to
go beyond the requirement’s description towards clarification
in direct contact with those who posed it.

Speaking of changes and themes that can be expected
there, there are themes of two kinds: some represent the
target of a change or changes and some represent the changes
themselves. As we are working with focused changes gained
by a decomposition of a change request, the expected case is
to have one theme of each kind per change.

In CHR03-1 (Figure 2), we have identified two themes: Add
Block/Unblock Column to Accounts List and View Accounts.
The same is done with the second change, CHR03-2 (Fig-
ure 3). In this case, the model denotes the requirement to check
if the user is blocked triggered by the behavior responsible for
logging the user in.

In the Theme vocabulary, both CHR03-1 CHR03-2 rep-
resent shared requirements. Such requirements have to be
resolved preferably—and in our approach necessarily—by
declaring one of the themes as crosscutting and making it
responsible for introducing the requirement into other themes.
In our approach, the crosscutting theme is always the one that
represents a change as such. You can see both our changes in
a so-called crosscutting–relationship view in Figures 4 and 5.
In terms of our IBM RSA UML profile, the crosscutting edges
are actually stereotyped dependencies.

Fig. 4. Add Block/Unblock Column to Accounts List: the crosscutting view.

Fig. 5. Check User Blocked: the crosscutting view.

Now that we have identified and analyzed the specification
changes that the change request contained, we need to figure
out how to design them. To do this, we first need to determine
the types of the changes. This is the moment when we can
take the advantage and make use of the catalog of change
types, and apply the two-level change model. When browsing
through the catalog, we look for similarities between our
specification changes and the specification change types within
the catalog. We rely on knowing the actual implementation or

design model. For example, we know that our account list is
implemented as a grid. With respect to this, we determine that
Add Block/Unblock Column to Accounts List is of the Add
Column to Grid type. Figure 6 compares this change to our
change type. The Show Grid theme in the specification change
type recalls our View Accounts theme, but this is nothing but a
lucky coincidence and in other cases the names of the themes
don’t have to be related. Nevertheless, the thing that must
match is the behavior that these two themes describe, which
is the behavior of showing the grid that is to be crosscut.

Fig. 6. Comparing Add Block/Unblock Column to Accounts List and the Add
Column to Grid change type: specification change type identification.

We identify a specification change type for the second
change in a similar manner. This is not straightforward as
the previous case. We can look at blocking user’s logging in
two ways: as the Introduce User Rights Management or as
Introduce Additional Constraint on Fields change type. The
operation of logging in consists of the form validation and
submission. If the user name and password are correct, the
form validation is correct. The triggering behavior can be the
validation, as well as the submission itself. The approach leads
towards viable solutions and it is up to the developer to decide
what is more suitable and more simple to design and imple-
ment. The choice also depends on the application environment
and the technologies used. In our example, we decided for
Introduce Additional Constraint on Fields. Figure 7 shows the
identification of a change with this specification change type.

Fig. 7. Comparing Add Block/Unblock Column to Accounts List and the
Check User Blocked change type: specification change type identification.

V. MODELING IMPLEMENTATION CHANGE TYPES

As with the code based aspect-oriented change realization,
here we also maintain a catalog, albeit in a graphical form.
Each specification change type is connected to the implemen-
tation change type by a trace dependency. Sometimes there



are multiple possibilities to choose from for the design. The
choice should not be difficult to make because the design is
closer to the implementation environment and we should now
know whether the design is feasible.

When designing the changes, we model the triggered be-
havior while using the scheme of the identified implementa-
tion change type. This doesn’t mean that we copy-paste the
sequence diagram and rename some elements. The scheme
is only to provide directions on the structure and behavior
similarly as design patterns do.

The Add Block/Unblock Column to Accounts List theme
design is shown in Figure 8. In terms of Theme/UML, this is
an aspect theme and all changes in our approach are supposed
to eventually end up as aspect themes. This is in accordance
with what is popularly known as aspect-oriented programming,
where aspects affect the base code in some manner. In the
aspect-oriented software development research this is actually
only a part of a more general view of aspect-orientation that
comprises also approaches to modularizing concerns (includ-
ing the crosscutting ones) into a set of elements that stand on
equal basis. This is not just an academic endeavor as proper-
ties of this so-called symmetric aspect-oriented programming
are reflected in contemporary programming languages [12];
however, this is out of the scope of this paper.

In Theme/UML, aspect themes are represented as parame-
terized packages comprising structural (class diagram) and be-
havioral models (typically sequence or activity diagrams). The
first parameter is by convention the one that triggers the be-
havior. In case of our Add Block/Unblock Column to Accounts
List theme, the trigger is the AcountsTable.generateTable()
operation. Parameters do not represent the actual application
elements: they just stand for these elements to be supplied by
the bind relationship.

In order for anything to happen, the sequence diagram has
to match the behavior sequence in the target (base) theme. The
point is in capturing certain behavior, which is practically an
operation call, and performing some other behavior before,
after, or instead of it, including repeatedly or conditionally
executing the captured behavior. To distinguish the capturing
of this behavior from the behavior itself, the do prefix
is used. Thus, a call to an operation with the do prefix
means the actual call ending in executing the corresponding
behavior. Here, it may be observed that sequence diagrams
in Theme/UML combine both pointcuts and advice, as these
elements are known in the prevailing AspectJ style of aspect-
oriented programming.

Getting back to our example, what happens is that after the
table has been generated, an additional column for blocking
users is created. Generally speaking, we performed an action
after event. This corresponds to the implementation change
type that realizes the Introduce Additional Constraint on Fields
specification change type: Perform Action After Event. Note
that we can add some other actions after the table generation
and it will still be of the same type. Figure 9 shows binding
the change with the View Accounts theme. Here we specify
the real replacement for the template parameters.

Fig. 9. Add Block/Unblock Column to Accounts List: the binding.

The processing of the second change is similar. We design
the change with the help of Additional Parameter Check,
which is the implementation change type tracing the Introduce
Additional Constraint on Fields specification change type. Just
like with the first change, we produce a sequence diagram of
the triggered behavior (Figure 10). Here, the trigger is the
UserLoginForm.validateForm() template parameter operation.
Prior to the form validation, the checkUserBlocked() operation
is called. In this operation, the user’s status is determined
with respect to blocking and the form’s validation status is
set accordingly.

Fig. 10. Check User Blocked: the theme design.

After this, the original validation process can be performed.
As an alternative to setting the form’s valid attribute false, a
validation exception can be drawn to prevent the form from
being submitted. The binding of the corresponding change
theme is depicted in Figure 11. Note that the actual parameter
bears the same name as the formal parameter. Theme/UML
allows for this, though it may be confusing.



Fig. 8. Add Block/Unblock Column to Accounts List: the theme design.

Fig. 11. Check User Blocked: the binding.

VI. EVALUATION

Apart from the preliminary examples of the proposed ap-
proach to modeling aspect-oriented change realizations some
of which are introduced in this paper, the evaluation was
conducted on a real web mail system. We focused on the
capability and usability of the modeled change types the
catalog we developed comprising all the specification and
implementation change types identified in the earlier work
on code based aspect-oriented change realization (the domain
specific change type is introduced first) [3]:

• One Way Integration: Performing Action After Event
• Two Way Integration: Performing Action After Event
• Adding Column to Grid: Performing Action After Event
• Removing Column from Grid: Method Substitution
• Altering Column Presentation in Grid: Method Substitu-

tion
• Adding Fields to Form: Enumeration Modification with

Additional Return Value Checking/Modification
• Removing Fields from Form: Additional Return Value

Checking/Modification
• Introducing Additional Constraint on Fields: Additional

Parameter Checking or Performing Action After Event
• Introducing User Rights Management: Border Control

with Method Substitution
• User Interface Restriction: Additional Return Value

Checking/Modifications
• Introducing Resource Backup: Class Exchange

Two change requests for the web mail system were studied,
analyzed, designed, and implemented. The catalog of change
type models showed to be useful and sufficiently correct.
Some problems appeared mainly in the process of imple-
mentation caused by the actual frameworks and technologies
used. Therefore, the catalog of change type models should
be somehow aware also of the variability in implementation
technologies. The implementation of the changes confirmed
the correctness of the design to implementation transformation
process guidelines of the Theme approach [10].

While evaluating the catalog of change type models, we
also found that there should be some feedback from the
developers using the catalog to help its improvement and
extension. Software developers should track deviations from
the cataloged change type models. This is valuable for future
development in the same domain. For example, if developers
find a new way to design a specification change type or iden-
tify a new implementation change type, they should analyze
it and propose it for incorporating into the corresponding
catalog. The specification and implementation change types in
the catalog are more or less dependent on the actual application
design and on characteristics of the application domain.

We managed to almost fully rely on the catalog. However,
the catalog is there not to give directives, but to provide
recommendations.

It is difficult to compare the effectiveness of this approach
or to quantify the effort of the change realization. However,
within the common, non aspect-oriented modeling, we can
observe that the larger the change is, more diagrams we have
to edit. In our approach, the change is focused in one diagram
and the original design is not being affected at all.



VII. RELATED WORK

Join point designation diagrams [13], [14] are another
aspect-oriented modeling technique aiming specifically at
expressing pointcuts in a graphical way. Preliminary find-
ings [15] indicate they are complimentary to Theme/UML
improving its ability to specify crosscutting and thus could
be of much help in improving the approach proposed here.

The Distributed Systems Group at the University of Dublin
created a tool for composition with transformation using
OpenArchitectureWare implemented as an Eclipse plugin [16].
Their tool supports Theme/UML composition based on the
XMI format, which can be applied to weave the aspect changes
into the target model to obtain it as a whole, common UML
model.

Object-oriented role analysis and modeling (OOram) [17],
[18], whose ideas have been revived in the DCI (Data, Context
and Interaction) approach [19], initially announced as DCA
(Data–Context–Algorithm) [18], enables a general separation
of concerns. Each concern is modeled within its own model
and these models are composed to achieve a complete be-
havior. This recalls themes and their composition making the
OOram notation a potential alternative to the Theme/UML
notation we used. Composite structure modeling in UML,
which employs the concept of role, too, is worth exploring
for its potential to mimic OOram’s notation within UML.

VIII. CONCLUSIONS AND FURTHER WORK

In this paper, an approach to modeling aspect-oriented
change realizations is proposed. The approach relies on our
earlier work on that resulted in a two-level aspect-oriented
change realization model [1], [3]. Regarding the modeling no-
tation, the approach is based on Theme [10], a comprehensive
approach to general aspect-oriented modeling.

One of the results of the work reported here is a catalog
of change type models for the domain of web applications
comprising the models of eleven specification change types
and seven implementation change types. Apart from the ex-
amples presented in the paper, the approach was successfully
applied to a real web mail system. As no dedicated Theme
modeling tool is available, a UML profile for both analytical
(Theme/Doc) and design part (Theme/UML) of the Theme
approach has been designed and implemented in IBM Rational
Software Architect.

Further work should aim at incorporating regular develop-
ers’ contributions to the catalog and change type diversity
management. Also, it is important to explore the possibilities
of adjusting the modeling notation to be as close as possible
to what standard UML modeling tools support. With respect
to this, switching from the Theme/Doc notation to use case
diagrams appears quite appealing [11].

ACKNOWLEDGMENTS

The work reported here was supported by the Scientific
Grant Agency of Slovak Republic (VEGA) under the grant No.
VG 1/1221/12. This contribution/publication is also a partial

result of the Research & Development Operational Programme
for the project Research of Methods for Acquisition, Analysis
and Personalized Conveying of Information and Knowledge,
ITMS 26240220039, co-funded by the ERDF.

REFERENCES

[1] M. Bebjak, V. Vranić, and P. Dolog, “Evolution of web applications with
aspect-oriented design patterns,” in Proceedings of ICWE 2007 Work-
shops, 2nd International Workshop on Adaptation and Evolution in Web
Systems Engineering, AEWSE 2007, in conjunction with ICWE 2007,
Como, Italy, Jul. 2007, pp. 80–86.

[2] V. Vranić, R. Menkyna, M. Bebjak, and P. Dolog, “Aspect-oriented
change realizations and their interaction,” e-Informatica Software En-
gineering Journal, vol. 1, no. 3, pp. 43–58, 2009.

[3] V. Vranić, M. Bebjak, R. Menkyna, and P. Dolog, “Developing ap-
plications with aspect-oriented change realization,” in Proceedings of
3rd IFIP TC2 Central and East European Conference on Software
Engineering Techniques, CEE-SET 2008, Revised Selected Papers, ser.
LNCS 4980. Brno, Czech Republic: Springer, 2011.

[4] R. Menkyna and V. Vranić, “Aspect-oriented change realization based
on multi-paradigm design with feature modeling,” in Proceedings of
4th IFIP TC2 Central and East European Conference on Software
Engineering Techniques, CEE-SET 2009, Revised Selected Papers, ser.
LNCS 7054. Krakow, Poland: Springer, 2012.

[5] P. Dolog, V. Vranić, and M. Bieliková, “Representing change by aspect,”
ACM SIGPLAN Notices, vol. 36, no. 12, pp. 77–83, Dec. 2001.

[6] I. Bluemke and K. Billewicz, “Aspect modification of an EAR appli-
cation,” in Proceedings of International Joint Conferences on Com-
puter, Information, and Systems Sciences, and Engineering, CIS2E 08.
Krakow, Poland: Springer, Dec. 2008, to appear.

[7] ——, “Aspects in the maintenance of complied program,” in Proceed-
ings of 5th International Conference on Dependability of Computer
Systems, DepCoS-RELCOMEX 2008. Szklarska Porȩba, Poland: IEEE,
Jun. 2008, pp. 253–260.

[8] V. Vranić, “Aspect-oriented change realization: Approach, design pat-
terns, and beyond,” 2008, series of lectures at Lancaster University, UK.
http://fiit.stuba.sk/˜vranic/pub/lu/abstract.html.

[9] ——, “Aspect-oriented change realization,” Habilitation thesis (submit-
ted in fulfillment of the requirements for the Associate Professor degree),
Slovak University of Technology in Bratislava, Slovakia, 2011.

[10] S. Clarke and E. Baniassad, Aspect-Oriented Analysis and Design: The
Theme Approach. Addison-Wesley, 2005.

[11] V. Vranić and P. Michalco, “Are themes and use cases the same?”
Information Sciences and Technologies, Bulletin of the ACM Slovakia,
vol. 2, no. 1, pp. 66–71, 2010, special Section on Early Aspects at AOSD
2010.

[12] J. Bálik and V. Vranić, “Symmetric aspect-orientation: Some practical
consequences,” in Proceedings of NEMARA 2012: International Work-
shop on Next Generation Modularity Approaches for Requirements and
Architecture, at AOSD 2012. Potsdam, Germany: ACM, Mar. 2012.

[13] D. Stein, S. Hanenberg, and R. Unland, “Query models,” in Proceedings
of 7th International Conference on the Unified Modeling Language,
UML 2004, ser. LNCS 3273. Lisbon, Portugal: Springer, Oct. 2004.

[14] D. Stein, P. Sánchez, S. Hanenberg, L. Fuentes, and R. Unland, “Fa-
cilitating the exploration of join point selection,” in Aspect-Oriented
Models Models in Software Engineering, Workshops and Symposia at
MoDELS 2010, ser. LNCS 6627. Olso, Norway: Springer, 2011.

[15] A. Jackson and S. Clarke, “Towards the integration of Theme/UML and
JPDDs,” in 8th International Workshop on Aspect-Oriented Modeling,
held in conjunction with 5th International Conference on Aspect-
Oriented Software Development, AOSD’06, Bonn, Germany, Mar. 2006.

[16] Distributed Systems Group, Trinity College Dublin, University of
Dublin, “Theme/uml,” http://www.dsg.cs.tcd.ie/aspects/themeUML.

[17] T. Reenskaug, P. Wold, and O. A. Lehne, Working With Objects: The
OOram Software Engineering Method. Prentice Hall, 1996.

[18] T. Reenskaug, “Programming with roles and classes: The BabyUML
approach,” in Computer Software Engineering Research. Nova Pub-
lishers, 2007.

[19] J. Coplien and G. Bjørnvig, Lean Architecture: for Agile Software
Development. Wiley, 2010.


