
Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Aspect-Oriented Change Realization Based on
Multi-Paradigm Design with Feature Modeling

Radoslav Menkyna1 Valentino Vrani¢2

Softec, spol. s.r.o.

Kutuzovova 23, 83103 Bratislava 3, Slovakia

radoslav.menkyna@softec.sk

Institute of Informatics and Software Engineering

Faculty of Informatics and Information Technologies

Slovak University of Technology,

Ilkovi£ova 3, 84216 Bratislava 4, Slovakia

vranic@fiit.stuba.sk

CEE-SET 2009, October 12�14, 2009, Krakow, Poland

1 / 24

radoslav.menkyna@softec.sk
vranic@fiit.stuba.sk

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Overview

1 Aspect-Oriented Change Realization

2 Generally Applicable Change Types as Paradigms

3 Feature Model of Changes

4 Transformational Analysis

5 Change Interaction

6 Related Work

2 / 24

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Why Use Aspects in Change Realization?

Change realization is di�cult and expensive

Changes of software applications exhibit crosscutting nature:

Intrinsically by being related to many di�erent parts of the
application they a�ect
By their perception as separate units that can be included or
excluded from a particular application build

Aspect-oriented programming provides suitable means to
realize changes in a pluggable and reapplicable way

3 / 24

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Aspect-Oriented Change Realization Research

Integrative work based on our previous research e�orts

Using aspect-oriented programming to implement changes

Two-level aspect-oriented change realization framework

Multi-paradigm design with feature modeling

Modeling changes as features

Change interaction as feature interaction

4 / 24

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Aspect-Oriented Change Realization

Two-Level AO Change Realization Framework

How to get to the change realization?

Two levels of changes:

Domain speci�c changes
Generally applicable changes

Domain speci�c to generally applicable change mappings are
catalogued

5 / 24

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Aspect-Oriented Change Realization

Catalog of Changes in Web Application Domain (1)

Integration Changes

One Way Integration: Performing Action After Event
Two Way Integration: Performing Action After Event

Grid Display Changes

Adding Column to Grid: Performing Action After Event
Removing Column from Grid: Method Substitution
Altering Column Presentation in Grid: Method Substitution

6 / 24

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Aspect-Oriented Change Realization

Catalog of Changes in Web Application Domain (2)

Input Form Changes

Adding Fields to Form: Enumeration Modi�cation with
Additional Return Value Checking/Modi�cation
Removing Fields from Form: Additional Return Value
Checking/Modi�cation
Introducing Additional Constraint on Fields: Additional
Parameter Checking or Performing Action After Event

Introducing User Rights Management: Border Control with
Method Substitution

User Interface Restriction: Additional Return Value
Checking/Modi�cations

Introducing Resource Backup: Class Exchange

7 / 24

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Aspect-Oriented Change Realization

What if there is no catalog?

AOP enables cleaner change realization

The two-level framework improves this process�assuming
there is a catalog of changes

Creating the catalog of changes may be out of the scope of
the momentary needs�to implement a particular change

The expected number of generally applicable change types
that would cover all signi�cant situations is not high

The problem is in domain speci�c change types and their
mapping to generally applicable change types

This resembles the problem of the selection of a paradigm
suitable to implement a particular application domain
concept�a subject of multi-paradigm approaches

8 / 24

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Generally Applicable Change Types as Paradigms

Multi-Paradigm Design

Multi-paradigm design: a process of aligning of application
domain structures with the opportunities for their realization in
the solution domain

Solution domain concepts (realization mechanisms) denoted as
paradigms

Transformational analysis

Multi-paradigm design with feature modeling (MPDFM)

Feature modeling is used to express both paradigms and
application domain concepts
Transformational analysis performed as paradigm instantiation
(feature model con�guration) over application domain concepts

9 / 24

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Generally Applicable Change Types as Paradigms

Aspect Paradigm

Aspect

Inter-Type
Declarations®

Instantiation
Policy

Aspects®

Static

Name

FinalAdvices®

Pointcuts®

Fields

Methods®

Singleton Per Object
Per Control Flow

Pointcut® Pointcut® Whole Below

Scope

Interfaces® Classes®

Inheritances®

Access®

Privileged

Abstract

Constraints:

�nal ∨ abstract

10 / 24

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Generally Applicable Change Types as Paradigms

Method Substitution

Method Substitution

Original
Method Calls

Altering
FunctionalityAspect® Context

Method
Arguments

Target
Class

Proceed with
Original Methods

Check/Modify
Arguments

Check/Modify
Return Value

Constraints:
Aspect.Pointcut
Aspect.Advice.Around

public aspect MethodSubstitution {
pointcut methodCalls(TargetClass t, int a): . . .;
ReturnType around(TargetClass t, int a): methodCalls(t, a) {

if (. . .) { . . . } // the new method logic
else proceed(t, a);

}
}

11 / 24

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Generally Applicable Change Types as Paradigms

Performing Action After Event

Performing Action
After Event

Action
After EventAspect® Context

Calls Executions Method
Arguments

Target
Class

Initializations

Field
Readings

Field
Writings

Advice
Executions

Events

Check/Modify
Return Value

Constraints:
Aspect.Pointcut
Aspect.Advice.After

public aspect PerformActionAfterEvent {
pointcut methodCalls(TargetClass t, int a): . . .;
after(/∗ captured arguments ∗/): methodCalls(/∗ captured arguments ∗/) {

performAction(/∗ captured arguments ∗/);
}
private void performAction(/∗ arguments ∗/) { /∗ action logic ∗/ }

}

12 / 24

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Feature Model of Changes

Feature Model of Changes

Changes are captured in the initial application domain feature
model

All the changes are modeled as optional features of the
features they a�ect

The feature model expresses constraints among changes

But the application feature model may not be available

We may use a partial feature model

Initially, changes are attached directly to the application
concept node

SMTP Server
Backup A

Newsletter
Sign Up

User Name
Display Change

 Restricted
Administrator

Account

Hide Options Unavailable
to Restricted Administrator

Affiliate Marketing

SMTP Server
Backup B

Account
Registration
Constraint

Account
Registration

Statistics

13 / 24

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Feature Model of Changes

Partial Feature Model (1)

The rudimentary partial feature model can be developed
further to uncover parent features of the change features as
the features of the underlying system a�ected by them

Starting at change features, we proceed bottom up identifying
their parent features until related features become grouped in
common subtrees

14 / 24

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Feature Model of Changes

Partial Feature Model (2)

Newsletter
Sign Up

[Displaying
Menu Items]

[Banner
Management]

Hide Options
Unavailable to

Restricted
Administrator

[Affiliate Marketing]

[SMTP Server
Creation]

Account
Registration
Constraint

Account
Registration

Statistics

SMTP Server
Backup B

[Affiliate
Sign Up]

User Name
Display Change

[Displaying Grid
Data]

 Restricted
Administrator

Account

[Campaign
Management]

 Restricted
Administrator

Account

SMTP Server
Backup A

Constraints:
Hide Operations Unavailable to Restricted Administrator →
Restricted Administration Account

15 / 24

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Transformational Analysis

MPDFM Transformational Analysis (TA)

The process of �nding the correspondence and establishing the
mapping between the application and solution domain concepts

Based on paradigm instantiation (feature model con�guration)
over application domain concepts

Input: two feature models�the application domain one and
the solution domain one

Output: a set of paradigm instances annotated with
application domain feature model concepts and features that
de�ne the code skeleton

16 / 24

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Transformational Analysis

Transformational Analysis of Changes (1)

Simpli�ed transformational analysis can be used to determine
which general change types that correspond to the domain
speci�c changes
Changes presented in the application domain feature model are
considered to be application domain concepts
Generally applicable change types are considered to be
paradigms
For each change C from the application domain feature model,
the following steps are performed:

1 Select a generally applicable change type P that has not been
considered for C yet

2 If there are no more paradigms to select, the process for C has
failed.

3 Try to instantiate P over C at source time. If this couldn't be
performed or if P's root doesn't match with C 's root, go to
step one. Otherwise, record the paradigm instance created.

17 / 24

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Transformational Analysis

Transformational Analysis of Changes (2)

Take the subtree in which the change resides

Instantiate change types until there is a match for the change
feature found

18 / 24

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Transformational Analysis

Example: Newsletter Sign Up TA

Performing Action
After Event

Action
After EventAspect® Context

Calls Executions Method
Arguments

Target
Class

Initializations

Field
Readings

Field
Writings

Advice
Executions

Events

Check/Modify
Return Value

Newsletter
Sign Up

[Displaying
Menu Items]

[Banner
Management]

Hide Options
Unavailable to

Restricted
Administrator

[Affiliate Marketing]

[SMTP Server
Creation]

Account
Registration
Constraint

Account
Registration

Statistics

SMTP Server
Backup B

[Affiliate
Sign Up]

User Name
Display Change

[Displaying Grid
Data]

 Restricted
Administrator

Account

[Campaign
Management]

 Restricted
Administrator

Account

SMTP Server
Backup A

↓ TA
Performing Action

After Event

Events Action After
EventsAspect®

Newsletter
Sign Up

ExecutionAffiliate
Sign Up

Add Affiliate
to Newsletter

Recipients

Context

Method
Arguments Affiliate Data

19 / 24

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Transformational Analysis

Example: Restricted Administrator Account TA

Method Substitution

Original
Method Calls

Altering
FunctionalityAspect® Context

Method
Arguments

Target
Class

Proceed with
Original Methods

Check/Modify
Arguments

Check/Modify
Return Value

Newsletter
Sign Up

[Displaying
Menu Items]

[Banner
Management]

Hide Options
Unavailable to

Restricted
Administrator

[Affiliate Marketing]

[SMTP Server
Creation]

Account
Registration
Constraint

Account
Registration

Statistics

SMTP Server
Backup B

[Affiliate
Sign Up]

User Name
Display Change

[Displaying Grid
Data]

 Restricted
Administrator

Account

[Campaign
Management]

 Restricted
Administrator

Account

SMTP Server
Backup A

↓ TA

Method Substitution

Original
Method Call

Proceed With
Original Methods

Aspect®

Restricted
Administrator

Account

Campaign
Management

If Access
Is Granted

Banner
Management

Context

Method
Arguments

Target
Class

Altering
Functionality

20 / 24

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Change Interaction

Change Interaction

Change realizations can interact:

They may be mutually dependent
Some change realizations may depend on the parts of the
underlying system a�ected by other change realizations

Interaction is most probable if multiple changes a�ect the
same functionality

Such situations could be identi�ed in part already during the
creation of a partial feature model

Transformational analysis can reveal more details needed to
identify the interaction of change realizations

21 / 24

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Change Interaction

Example: Change Interaction and Pointcut Type
Performing Action

After Event

Events Action After
EventsAspect®

Newsletter
Sign Up

ExecutionAffiliate
Sign Up

Add Affiliate
to Newsletter

Recipients

Context

Method
Arguments Affiliate Data

Account Registration Constraint change represents a potential
source of interaction with Newsletter Sign Up�they target the
same functionality
Transformational analysis revealed that Newsletter Sign Up
relies on method executions, not calls�it employs an
execution() pointcut
An interaction: if the Registration Constraint change disables
new a�liate registration, Newsletter Sign Up would not be
executed either
If Newsletter Sign Up would rely on method calls, unwanted
system behavior would occur

22 / 24

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Related Work

Related Work

Change impact has been studied using slicing in concern slice
dependency graphs 1

Changes modeled as application features are close to
evolutionary development of a new product line 2

Framed aspects can be used to keep changes separate 3

1
S. Khan and A. Rashid. Analysing requirements dependencies and change impact using concern

slicing. In Proc. of Aspects, Dependencies, and Interactions Workshop (a�liated to ECOOP 2008),
Nantes, France, July 2006.

2
J. Bosch. Design and Use of Software Architectures: Adopting and Evolving a Product-Line

Approach. Addison-Wesley, 2000.
3
N. Loughran et al. Supporting product line evolution with framed aspects. In Workshop on

Aspects, Components and Patterns for Infrastructure Software (held with AOSD 2004, International
Conference on Aspect-Oriented Software Development), Lancaster, UK, Mar. 2004.

23 / 24

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

Summary

Summary

The original idea: two-level AO change realization framework
to facilitate easier aspect-oriented change realization
This paper: enable direct change manipulation using
multi-paradigm design with feature modeling
No need for the domain speci�c change types, nor catalog
changes�just paradigm models of the generally applicable
changes
Revealing change interaction based on the results of
transformational analysis
We also developed paradigm models of other generally
applicable change types not presented here
Further work

Cover the changes realized by a collaboration of multiple
generally applicable change types and design patterns
Improve change type models by expressing them in the Theme
notation

24 / 24

	Aspect-Oriented Change Realization
	Generally Applicable Change Types as Paradigms
	Feature Model of Changes
	Transformational Analysis
	Change Interaction
	Related Work
	Summary

