
Modeling Aspect-Oriented Change Realizations

Modeling Aspect-Oriented Change Realizations

Erasmus Mobility at Lancaster University

Lecture 1

Valentino Vranić

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies

Slovak University of Technology
Bratislava, Slovakia

vranic@fiit.stuba.sk
http://fiit.stuba.sk/~vranic/

November 23–26, 2009

1 / 49

vranic@fiit.stuba.sk
http://fiit.stuba.sk/~vranic/

Modeling Aspect-Oriented Change Realizations

Overview

1 Changes as Crosscutting Concerns

2 Catalog of Changes

3 Changes at the Model Level

4 Generally Applicable Change Types as Paradigms

5 Feature Model of Changes

6 Transformational Analysis

7 Change Interaction

8 Related Work

9 Summary

2 / 49

Modeling Aspect-Oriented Change Realizations

Why Use Aspects in Change Realization?

Change realization is difficult and expensive
Changes of software applications exhibit crosscutting nature:

Intrinsically by being related to many different parts of the
application they affect
By their perception as separate units that can be included or
excluded from a particular application build

Aspect-oriented programming provides suitable means to
realize changes in a pluggable and reapplicable way

3 / 49

Modeling Aspect-Oriented Change Realizations

Motivating Example

Customization of web applications
A new version of the base application requires reapplication of
the customization changes at the client side

4 / 49

Modeling Aspect-Oriented Change Realizations
Changes as Crosscutting Concerns

Changes as Crosscutting
Concerns

5 / 49

Modeling Aspect-Oriented Change Realizations
Changes as Crosscutting Concerns

Change Requests as Crosscutting Requirements

A change is initiated by a change request
Specified in domain notions
Tends to be focused, but usually consists of several
requirements

By abstracting and generalizing the essence of a change, a
change type can be identified
Such a change type is applicable to a range of applications of
the same domain

6 / 49

Modeling Aspect-Oriented Change Realizations
Changes as Crosscutting Concerns

Crosscutting Nature of Change Realizations

A change often affects many places in the code
E.g., modification of selected calls of the given method

Even if it affects a single place, we may want to keep it
separate

To be able to revert it and reapply it
Especially useful in the customization of web applications

Thus, changes can be seen as crosscutting concerns

7 / 49

Modeling Aspect-Oriented Change Realizations
Changes as Crosscutting Concerns

Example Scenario

Aspect-oriented change realization will be presented on an
example scenario
A merchant who runs his online music shop purchases a
general affiliate marketing software to advertise at third party
web sites (affiliates)
Simplified affiliate marketing scheme:

A customer visits an affiliate’s site which refers him to the
merchant’s site
When the customer buys something from the merchant, the
provision is given to the affiliate who referred the sale

Affiliate marketing software has to be adapted (customized) to
the merchant’s needs through a series of changes
Assume the affiliate marketing software is written in Java
We use AspectJ to implement changes

8 / 49

Modeling Aspect-Oriented Change Realizations
Changes as Crosscutting Concerns

Why Aspect-Oriented Programming?
Aspect-oriented programming enables to deal with change
explicitly and directly at programming language level
The logic of a change is modularized
Changes implemented by aspects are pluggable and
reapplicable to similar applications (e.g., in a product line)
Increased changeability of components has been reported if
they are implemented using

Aspect-oriented programming as such1

Aspect-oriented programming with the frame technology2

Enhanced reusability and evolvability of design patterns has
been achieved by using generic aspect-oriented languages to
implement them3

1J. Li, A. A. Kvale, and R. Conradi. A case study on improving changeability of COTS-based
system using aspect-oriented programming. Journal of Information Science and Engineering,
22(2):375–390, Mar. 2006.

2N. Loughran et al. Supporting product line evolution with framed aspects. In Workshop on
Aspects, Componentsand Patterns for Infrastructure Software (held with AOSD 2004, International
Conference on Aspect-Oriented Software Development), Lancaster, UK, Mar. 2004.

3T. Rho and G. Kniesel. Independent evolution of design patterns and application logic with generic
aspects—a case study. IAI-TR-2006-4, University of Bonn, Germany, Apr. 2006. 9 / 49

Modeling Aspect-Oriented Change Realizations
Changes as Crosscutting Concerns

Domain Specific Changes

Example: adding a backup SMTP server to ensure delivery of
the notifications to users

Each time the affiliate marketing software needs to send a
notification, it creates an instance of the SMTPServer class
which handles the connection to the SMTP server

A generalization:
An SMTP server is a kind of a resource that needs to be
backed up
In general, it’s a kind of Introducing Resource Backup
Abstract, but still expressed in a domain specific way—a
domain specific change type

10 / 49

Modeling Aspect-Oriented Change Realizations
Changes as Crosscutting Concerns

Domain Specific Change Implementation (1)

The crosscutting concern identified: maintaining a backup
resource that has to be activated if the original one fails
Can be implemented in a single aspect without modifying the
original code

11 / 49

Modeling Aspect-Oriented Change Realizations
Changes as Crosscutting Concerns

Domain Specific Changes
class NewSMTPServer extends SMTPServer {

. . .
}
public aspect BackupSMTPServer {

public pointcut SMTPServerConstructor(URL url, String user, String password):
call(SMTPServer.new(..)) && args (url, user, password);

SMTPServer around(URL url, String user, String password):
SMTPServerConstructor(url, user, password) {
return getSMTPServerBackup(proceed(url, user, password));

}
SMTPServer getSMTPServerBackup(SMTPServer obj) {

if (obj.isConnected()) {
return obj;

}
else {

return new SMTPServerBackup(obj.getUrl(), obj.getUser(),
obj.getPassword());

}
}

} 12 / 49

Modeling Aspect-Oriented Change Realizations
Changes as Crosscutting Concerns

Domain Specific Change Implementation (2)

If we abstract from SMTP servers and resources altogether,
it’s actually a class exchange
Class Exchange change type based on the Cuckoo’s Egg
aspect-oriented design pattern 4

public class AnotherClass extends MyClass {
. . .

}
public aspect MyClassSwapper {

public pointcut myConstructors(): call(MyClass.new());
Object around(): myConstructors() {

return new AnotherClass();
}

}

Class Exchange is a generally applicable change type
4R. Miles. AspectJ Cookbook. O’Reilly, 2004.

13 / 49

Modeling Aspect-Oriented Change Realizations
Changes as Crosscutting Concerns

Applying a Change Type

How to give a hint to developer to use a particular change
type?
We have to maintain a catalog of changes
Each domain specific change type is defined as a specialization
of one or more generally applicable changes

14 / 49

Modeling Aspect-Oriented Change Realizations
Catalog of Changes

Catalog of Changes

15 / 49

Modeling Aspect-Oriented Change Realizations
Catalog of Changes

Applying a Change Type

To support the process of change selection, the catalog of
changes is needed
It explicitly establishes generalization–specialization
relationships between change types
The following list sums up these relationships between change
types we have identified in the web application domain (the
domain specific change type is introduced first)

16 / 49

Modeling Aspect-Oriented Change Realizations
Catalog of Changes

Catalog of Changes in Web Application Domain (1)

Integration Changes
One Way Integration: Performing Action After Event
Two Way Integration: Performing Action After Event

Grid Display Changes
Adding Column to Grid: Performing Action After Event
Removing Column from Grid: Method Substitution
Altering Column Presentation in Grid: Method Substitution

17 / 49

Modeling Aspect-Oriented Change Realizations
Catalog of Changes

Catalog of Changes in Web Application Domain (2)

Input Form Changes
Adding Fields to Form: Enumeration Modification with
Additional Return Value Checking/Modification
Removing Fields from Form: Additional Return Value
Checking/Modification
Introducing Additional Constraint on Fields: Additional
Parameter Checking or Performing Action After Event

Introducing User Rights Management: Border Control with
Method Substitution
User Interface Restriction: Additional Return Value
Checking/Modifications
Introducing Resource Backup: Class Exchange

18 / 49

Modeling Aspect-Oriented Change Realizations
Changes at the Model Level

Changes at the Model Level

19 / 49

Modeling Aspect-Oriented Change Realizations
Changes at the Model Level

Changes at the Model Level

There may be a need to introduce changes at the model level
Assume the model is in the Theme notation
Change types can also be modeled in Theme

20 / 49

Modeling Aspect-Oriented Change Realizations
Changes at the Model Level

Theme/Doc Domain Specific Change Type Model

Domain specific change types can be modeled in Theme/Doc5

They are ready to be attached to the themes affected by them

5B. Kuliha. Realizing Changes by Aspects at the Design Level. Master thesis in preparation.
21 / 49

Modeling Aspect-Oriented Change Realizations
Changes at the Model Level

Theme/Doc Domain Specific Change Type Model

Themes and relationships view
Crosscutting view

22 / 49

Modeling Aspect-Oriented Change Realizations
Changes at the Model Level

Theme/UML Generally Applicable Change Type Model
(1)

Generally applicable change types can be modeled in
Theme/UML
They are to be composed with the affected themes

23 / 49

Theme/UML Generally Applicable Change Type Model
(2)

Modeling Aspect-Oriented Change Realizations
Changes at the Model Level

Mapping

We still need a catalog

25 / 49

Modeling Aspect-Oriented Change Realizations
Changes at the Model Level

What if there is no catalog?

AOP enables cleaner change realization
The two-level framework improves this process—assuming
there is a catalog of changes
Creating the catalog of changes may be out of the scope of
the momentary needs—to implement a particular change
The expected number of generally applicable change types
that would cover all significant situations is not high
The problem is in domain specific change types and their
mapping to generally applicable change types
This resembles the problem of the selection of a paradigm
suitable to implement a particular application domain
concept—a subject of multi-paradigm approaches

26 / 49

Modeling Aspect-Oriented Change Realizations
Generally Applicable Change Types as Paradigms

Generally Applicable Change
Types as Paradigms

27 / 49

Modeling Aspect-Oriented Change Realizations
Generally Applicable Change Types as Paradigms

Multi-Paradigm Design

Multi-paradigm design: a process of aligning of application
domain structures with the opportunities for their realization in
the solution domain
Solution domain concepts (realization mechanisms) denoted as
paradigms
Transformational analysis
Multi-paradigm design with feature modeling (MPDFM)

Feature modeling is used to express both paradigms and
application domain concepts
Transformational analysis performed as paradigm instantiation
(feature model configuration) over application domain concepts

28 / 49

Modeling Aspect-Oriented Change Realizations
Generally Applicable Change Types as Paradigms

Aspect Paradigm

Aspect

Inter-Type
Declarations®

Instantiation
Policy

Aspects®

Static

Name

FinalAdvices®

Pointcuts®

Fields

Methods®

Singleton Per Object
Per Control Flow

Pointcut® Pointcut® Whole Below

Scope

Interfaces® Classes®

Inheritances®

Access®

Privileged

Abstract

Constraints:

final ∨ abstract

29 / 49

Modeling Aspect-Oriented Change Realizations
Generally Applicable Change Types as Paradigms

Method Substitution

Method Substitution

Original
Method Calls

Altering
FunctionalityAspect® Context

Method
Arguments

Target
Class

Proceed with
Original Methods

Check/Modify
Arguments

Check/Modify
Return Value

Constraints:
Aspect.Pointcut
Aspect.Advice.Around

public aspect MethodSubstitution {
pointcut methodCalls(TargetClass t, int a): . . .;
ReturnType around(TargetClass t, int a): methodCalls(t, a) {

if (. . .) { . . . } // the new method logic
else proceed(t, a);

}
}

30 / 49

Modeling Aspect-Oriented Change Realizations
Generally Applicable Change Types as Paradigms

Performing Action After Event

Performing Action
After Event

Action
After EventAspect® Context

Calls Executions Method
Arguments

Target
Class

Initializations

Field
Readings

Field
Writings

Advice
Executions

Events

Check/Modify
Return Value

Constraints:
Aspect.Pointcut
Aspect.Advice.After

public aspect PerformActionAfterEvent {
pointcut methodCalls(TargetClass t, int a): . . .;
after(/∗ captured arguments ∗/): methodCalls(/∗ captured arguments ∗/) {

performAction(/∗ captured arguments ∗/);
}
private void performAction(/∗ arguments ∗/) { /∗ action logic ∗/ }

}

31 / 49

Modeling Aspect-Oriented Change Realizations
Feature Model of Changes

Feature Model of Changes

32 / 49

Modeling Aspect-Oriented Change Realizations
Feature Model of Changes

Feature Model of Changes (1)

Changes are captured in the initial application domain feature
model
All the changes are modeled as optional features of the
features they affect
The feature model expresses constraints among changes
But the application feature model may not be available
We may use a partial feature model
Initially, changes are attached directly to the application
concept node

33 / 49

Modeling Aspect-Oriented Change Realizations
Feature Model of Changes

Feature Model of Changes (2)

Newsletter
Sign Up

Hide Options
Unavailable to

Restricted
Administrator

[Affiliate Marketing]

Account
Registration
Constraint

Account
Registration

Statistics

SMTP Server
Backup B

User Name
Display Change

 Restricted
Administrator

Account

SMTP Server
Backup A

34 / 49

Modeling Aspect-Oriented Change Realizations
Feature Model of Changes

Partial Feature Model (1)

The rudimentary partial feature model can be developed
further to uncover parent features of the change features as
the features of the underlying system affected by them
Starting at change features, we proceed bottom up identifying
their parent features until related features become grouped in
common subtrees

35 / 49

Modeling Aspect-Oriented Change Realizations
Feature Model of Changes

Partial Feature Model (2)

Newsletter
Sign Up

[Displaying
Menu Items]

[Banner
Management]

Hide Options
Unavailable to

Restricted
Administrator

[Affiliate Marketing]

[SMTP Server
Creation]

Account
Registration
Constraint

Account
Registration

Statistics

SMTP Server
Backup B [Affiliate

Sign Up]

User Name
Display Change

[Displaying Grid
Data]

 Restricted
Administrator

Account

[Campaign
Management]

 Restricted
Administrator

Account

SMTP Server
Backup A

Constraints:
Hide Operations Unavailable to Restricted Administrator →
Restricted Administration Account

36 / 49

Modeling Aspect-Oriented Change Realizations
Transformational Analysis

Transformational Analysis

37 / 49

Modeling Aspect-Oriented Change Realizations
Transformational Analysis

MPDFM Transformational Analysis (TA)

The process of finding the correspondence and establishing the
mapping between the application and solution domain concepts
Based on paradigm instantiation (feature model configuration)
over application domain concepts
Input: two feature models—the application domain one and
the solution domain one
Output: a set of paradigm instances annotated with
application domain feature model concepts and features that
define the code skeleton

38 / 49

Modeling Aspect-Oriented Change Realizations
Transformational Analysis

Transformational Analysis of Changes (1)

Simplified transformational analysis can be used to determine
which general change types that correspond to the domain
specific changes
Changes presented in the application domain feature model are
considered to be application domain concepts
Generally applicable change types are considered to be
paradigms
For each change C from the application domain feature model,
the following steps are performed:

1 Select a generally applicable change type P that has not been
considered for C yet

2 If there are no more paradigms to select, the process for C has
failed.

3 Try to instantiate P over C at source time. If this couldn’t be
performed or if P’s root doesn’t match with C ’s root, go to
step one. Otherwise, record the paradigm instance created.

39 / 49

Modeling Aspect-Oriented Change Realizations
Transformational Analysis

Transformational Analysis of Changes (2)

Take the subtree in which the change resides
Instantiate change types until there is a match for the change
feature found

40 / 49

Modeling Aspect-Oriented Change Realizations
Transformational Analysis

Example: Newsletter Sign Up TA

Performing Action
After Event

Action
After EventAspect® Context

Calls Executions Method
Arguments

Target
Class

Initializations

Field
Readings

Field
Writings

Advice
Executions

Events

Check/Modify
Return Value

Newsletter
Sign Up

[Displaying
Menu Items]

[Banner
Management]

Hide Options
Unavailable to

Restricted
Administrator

[Affiliate Marketing]

[SMTP Server
Creation]

Account
Registration
Constraint

Account
Registration

Statistics

SMTP Server
Backup B [Affiliate

Sign Up]

User Name
Display Change

[Displaying Grid
Data]

 Restricted
Administrator

Account

[Campaign
Management]

 Restricted
Administrator

Account

SMTP Server
Backup A

↓ TA
Performing Action

After Event

Events Action After
EventsAspect®

Newsletter
Sign Up

ExecutionAffiliate
Sign Up

Add Affiliate
to Newsletter

Recipients

Context

Method
Arguments Affiliate Data

41 / 49

Modeling Aspect-Oriented Change Realizations
Transformational Analysis

Example: Restricted Administrator Account TA

Method Substitution

Original
Method Calls

Altering
FunctionalityAspect® Context

Method
Arguments

Target
Class

Proceed with
Original Methods

Check/Modify
Arguments

Check/Modify
Return Value

Newsletter
Sign Up

[Displaying
Menu Items]

[Banner
Management]

Hide Options
Unavailable to

Restricted
Administrator

[Affiliate Marketing]

[SMTP Server
Creation]

Account
Registration
Constraint

Account
Registration

Statistics

SMTP Server
Backup B [Affiliate

Sign Up]

User Name
Display Change

[Displaying Grid
Data]

 Restricted
Administrator

Account

[Campaign
Management]

 Restricted
Administrator

Account

SMTP Server
Backup A

↓ TA
Method Substitution

Original
Method Call

Proceed With
Original Methods

Aspect®

Restricted
Administrator

Account

Campaign
Management

If Access
Is Granted

Banner
Management

Context

Method
Arguments

Target
Class

Altering
Functionality

42 / 49

Modeling Aspect-Oriented Change Realizations
Change Interaction

Change Interaction

43 / 49

Modeling Aspect-Oriented Change Realizations
Change Interaction

Change Interaction

Change realizations can interact:
They may be mutually dependent
Some change realizations may depend on the parts of the
underlying system affected by other change realizations

Interaction is most probable if multiple changes affect the
same functionality
Such situations could be identified in part already during the
creation of a partial feature model
Transformational analysis can reveal more details needed to
identify the interaction of change realizations

44 / 49

Modeling Aspect-Oriented Change Realizations
Change Interaction

Example: Change Interaction and Pointcut Type
Performing Action

After Event

Events Action After
EventsAspect®

Newsletter
Sign Up

ExecutionAffiliate
Sign Up

Add Affiliate
to Newsletter

Recipients

Context

Method
Arguments Affiliate Data

Account Registration Constraint change represents a potential
source of interaction with Newsletter Sign Up—they target the
same functionality
Transformational analysis revealed that Newsletter Sign Up
relies on method executions, not calls—it employs an
execution() pointcut
An interaction: if the Registration Constraint change disables
new affiliate registration, Newsletter Sign Up would not be
executed either
If Newsletter Sign Up would rely on method calls, unwanted
system behavior would occur

45 / 49

Modeling Aspect-Oriented Change Realizations
Related Work

Related Work

46 / 49

Modeling Aspect-Oriented Change Realizations
Related Work

Related Work

Change impact has been studied using slicing in concern slice
dependency graphs 6

Changes modeled as application features are close to
evolutionary development of a new product line 7

Framed aspects can be used to keep changes separate 8

6S. Khan and A. Rashid. Analysing requirements dependencies and change impact using concern
slicing. In Proc. of Aspects, Dependencies, and Interactions Workshop (affiliated to ECOOP 2008),
Nantes, France, July 2006.

7J. Bosch. Design and Use of Software Architectures: Adopting and Evolving a Product-Line
Approach. Addison-Wesley, 2000.

8N. Loughran et al. Supporting product line evolution with framed aspects. In Workshop on
Aspects, Components and Patterns for Infrastructure Software (held with AOSD 2004, International
Conference on Aspect-Oriented Software Development), Lancaster, UK, Mar. 2004.

47 / 49

Modeling Aspect-Oriented Change Realizations
Summary

Summary

48 / 49

Modeling Aspect-Oriented Change Realizations
Summary

Summary

The original idea: two-level AO change realization framework
to facilitate easier aspect-oriented change realization
Introducing changes at the model level: using Theme to model
change types
How to enable direct change manipulation using
multi-paradigm design with feature modeling
No need for the domain specific change types, nor catalog
changes—just paradigm models of the generally applicable
changes
Revealing change interaction based on the results of
transformational analysis
We also developed paradigm models of other generally
applicable change types not presented here

49 / 49

	Changes as Crosscutting Concerns
	Catalog of Changes
	Changes at the Model Level
	Generally Applicable Change Types as Paradigms
	Feature Model of Changes
	Transformational Analysis
	Change Interaction
	Related Work
	Summary

