
Themes and Use Cases: Comparison and Transformation

Themes and Use Cases: Comparison and
Transformation

Erasmus Mobility at Lancaster University

Lecture 2

Valentino Vranić

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies

Slovak University of Technology
Bratislava, Slovakia

vranic@fiit.stuba.sk
http://fiit.stuba.sk/~vranic/

November 23–26, 2009
1 / 41

vranic@fiit.stuba.sk
http://fiit.stuba.sk/~vranic/


Themes and Use Cases: Comparison and Transformation

Overview

1 Introduction

2 Theme/Doc: An Example Scenario

3 Transforming Themes into Use Cases

4 Transforming Use Cases into Themes

5 Summary and Discussion

2 / 41



Themes and Use Cases: Comparison and Transformation
Introduction

Introduction

3 / 41



Themes and Use Cases: Comparison and Transformation
Introduction

Aspect-Oriented Analysis

As object-oriented development, aspect-oriented development
also starts with analysis
Use case modeling is a common approach to object-oriented
analysis
No common approach to aspect-oriented analysis yet
Ivar Jacobson showed that use cases not only can be used in
aspect-oriented development, but that they are intrinsically
aspect-oriented
Their full-fledged application in aspect-oriented development
requires some extensions in the use case diagram notation

4 / 41



Themes and Use Cases: Comparison and Transformation
Introduction

Theme

Theme is an important approach aspect-oriented analysis and
design
Its analytical part, Theme/Doc, is a kind of conceptual
modeling
Theme/Doc is based on the notion of theme
A theme bears the semantics of a use case
It may be desirable or necessary to switch from one way of
analysis to the other
For example, an initial—possibly automated—theme
identification may be to transformed to the more widely
accepted use case modeling
Also, a switch from use case modeling into Theme/Doc may
be needed in order to employ Theme/UML for design

5 / 41



Themes and Use Cases: Comparison and Transformation
Introduction

Aspect-Oriented Analysis

A way of transforming a Theme/Doc model into a use case
model and vice versa will be presented here
The transformation uncovers differences and commonalities
between use cases and themes in detail
Despite Theme/Doc lacks the elements that would correspond
to actors, flows, or extension points, the most of the themes
are transformed directly into use cases and vice versa with a
quite straightforward derivation of the relationships among
them

6 / 41



Themes and Use Cases: Comparison and Transformation
Theme/Doc: An Example Scenario

Theme/Doc: An Example
Scenario

7 / 41



Themes and Use Cases: Comparison and Transformation
Theme/Doc: An Example Scenario

The Theme/Doc Approach (1)

Theme/Doc is the analytical part of the Theme approach1

It consists of the following four main activities performed in
iterations:

1 Choose a starting set of potential themes
2 Refine the set of themes
3 Identify which of the themes are aspects
4 Prepare for design

1S. Clarke and E. Baniassad. Aspect-Oriented Analysis and Design: The Theme Approach.
Addison-Wesley, 2005.

8 / 41



Themes and Use Cases: Comparison and Transformation
Theme/Doc: An Example Scenario

The Theme/Doc Approach (2)

A theme is a modularization construct that encapsulates a
concern2

Themes are graphically represented in a simple notation
Three different views are used:

theme–relationship
crosscutting
individual view

2P. Sánchez, L. Fuentes, A. Jackson, and S. Clarker. Aspects at the right time. Transactions on
Aspect-Oriented Software Development, IV:54–113, 2007.

9 / 41



Themes and Use Cases: Comparison and Transformation
Theme/Doc: An Example Scenario

An Example Scenario (1)

An example scenario of a simplified retail support application
development that includes store management, price
management, and cash desk functionality provided
simultaneously on several PCs in the store
Requirements:

10 / 41



Themes and Use Cases: Comparison and Transformation
Theme/Doc: An Example Scenario

An Example Scenario (2)

1 The application will record and maintain the product quantity in the stock in
the central database.

2 The storekeeper can remove products from the database.
3 The storekeeper can add products into the database.
4 The storekeeper can change the product quantity in the database.
5 The cashier can bill the item by manually entering the bar code or with a bar

code reader.
6 Only the products recorded in the database can be billed.
7 The billed items can be removed from the bill until it has been closed.
8 The billed item removal must be approved by a store manager by entering his

authentication data.
9 The billed items will be printed on the cash desk bill as they are entered. The

bill will embrace the store name, billed items, information on removed billed
items, the total amount of money to be paid, and date and time.

10 The product price can be entered or modified only by a properly authenticated
store manager.

11 / 41



Themes and Use Cases: Comparison and Transformation
Theme/Doc: An Example Scenario

The Themes in the Retail Support Application

12 / 41



Themes and Use Cases: Comparison and Transformation
Theme/Doc: An Example Scenario

Aspect Separation (1)

Five shared requirements: R6, R7, R8, R9, and R10
R8 is about removing the billed item, while the theme bill is
about billing in the sense of adding items to the bill which is
covered by the R7 requirement, so the connection between R8
and the bill theme can be omitted.
Removed items printing can be separated from the R9
requirement into a new requirement R11, so the connection
between the R9 requirement and the remove-item theme can
be omitted:

13 / 41



Themes and Use Cases: Comparison and Transformation
Theme/Doc: An Example Scenario

Aspect Separation (2)

9 The billed items will be printed on the cash desk bill as they
are entered. The bill will embrace the store name, billed items,
the total amount of money to be paid, and date and time.

11 The removed items will be printed on the cash desk bill as
they are entered.

If no further requirement rewriting can help isolating
requirements, the remaining requirement sharing is due to the
crosscutting nature of some themes

14 / 41



Themes and Use Cases: Comparison and Transformation
Theme/Doc: An Example Scenario

The Crosscutting View

15 / 41



Themes and Use Cases: Comparison and Transformation
Theme/Doc: An Example Scenario

No Dominant Theme

For some requirements sharing it may be impossible to
determine the dominant theme—indicated by dotted edges
between themes marked by respective requirement number
Postponed to design

16 / 41



Themes and Use Cases: Comparison and Transformation
Transforming Themes into Use Cases

Transforming Themes into Use
Cases

17 / 41



Themes and Use Cases: Comparison and Transformation
Transforming Themes into Use Cases

Basic Comparison

Both themes and use cases represent functionality and have
active names
Use cases are not just any functionality, and it may seem
themes are, but—if at all—only in initial phases of automated
theme identification
Use case identification is similar to theme identification (use
cases are even acknowledged as one of the sources of themes)
Similarity in relationships:

Crosscutting relationship between themes and extend
relationship between use cases
Grouped themes resemble include relationship between use
cases
Unified themes seem as a rudimentary form of generalization

A significant difference: themes lack a direct description
whereas use cases are primarily textual
No actors in the theme model

18 / 41



Themes and Use Cases: Comparison and Transformation
Transforming Themes into Use Cases

Transforming Themes into Use Cases (1)

1 Create a use case for each theme. Identify actors in
requirements.

2 Create an extend relationship for each crosscut relationship
found in the crosscutting view preserving its direction.

3 Consider splitting themes. Identify grouped themes in
individual theme views (both the existing ones and those
obtained in step 1). Consider transforming each
theme–subtheme relationship into an include relationship or
into a generalization relationship if the theme and subtheme
conceptually represent the same theme. Deciding not to
transform the subtheme means deciding its functionality will
be an integral part of the existing use case possibly as a
separate flow.

19 / 41



Themes and Use Cases: Comparison and Transformation
Transforming Themes into Use Cases

Transforming Themes into Use Cases (2)

4 Consider unifying themes. Identify unified themes in the
history of the operations performed upon the theme model if it
is available. Consider transforming unified themes into
generalizations.

5 Consider the granularity of the obtained use cases and
restructure them as necessary by including too low level use
cases as flows of regular ones.

6 Resolve the postponed relationships.

20 / 41



Themes and Use Cases: Comparison and Transformation
Transforming Themes into Use Cases

The Initial Use Case Model

Identified use cases and extend relationships

21 / 41



Themes and Use Cases: Comparison and Transformation
Transforming Themes into Use Cases

Renaming Use Cases

Theme Name Use Case Name
record-quantity Record Product Quantity
add-product Add Product
change-quantity Change Product Quantity
print-bill Print Billed Item
aprove Approve
bill Bill Item
remove-item Remove Billed Item
modify-price Modify Product Price
identify-product Identify Product
remove-product Remove Product

22 / 41



Themes and Use Cases: Comparison and Transformation
Transforming Themes into Use Cases

Extension Points

Extension points omitted since we don’t deal with the actual
flows in use cases
Nevertheless, a Cockburn style descriptive reference to
extension points in extending use cases can be provided
Example: Print Billed Item is activated each time an item is
added to a bill or removed from it
Base themes (that do not appear as subthemes) in the initial
process correspond to peer use cases—so no special effort
needed

23 / 41



Themes and Use Cases: Comparison and Transformation
Transforming Themes into Use Cases

Subthemes (1)

Theme splitting may be needed

24 / 41



Themes and Use Cases: Comparison and Transformation
Transforming Themes into Use Cases

Subthemes (2)

We could create a separate use case for each subtheme, but
closer look at them reveals they represent the same
functionality named differently merely due to Theme/Doc
doesn’t allow themes with equal names

25 / 41



Themes and Use Cases: Comparison and Transformation
Transforming Themes into Use Cases

Theme Unification into One Use Case

26 / 41



Themes and Use Cases: Comparison and Transformation
Transforming Themes into Use Cases

Theme Unification by Generalization

27 / 41



Themes and Use Cases: Comparison and Transformation
Transforming Themes into Use Cases

Granularity (1)

Themes tend to be lower level than use cases—check the level
Introducing an integral use case

28 / 41



Themes and Use Cases: Comparison and Transformation
Transforming Themes into Use Cases

Granularity (2)

Keeping former use cases as inclusion-only use cases

29 / 41



Themes and Use Cases: Comparison and Transformation
Transforming Themes into Use Cases

Postponed Relationships

Resolved as any kind of legal use case to use case relationship
Can even be dismissed

30 / 41



Themes and Use Cases: Comparison and Transformation
Transforming Use Cases into Themes

Transforming Use Cases into
Themes

31 / 41



Themes and Use Cases: Comparison and Transformation
Transforming Use Cases into Themes

Transforming Use Cases into Themes (1)

1 Identify themes by transforming each use case not embraced in
generalization into a theme and transforming each
generalization among use cases into a unified theme.
Optionally rename themes by shortening the corresponding use
case names. Drop actors.

2 Create the crosscutting view by transforming each extend
relationship between use cases into a crosscutting relationship
between the corresponding themes preserving its direction.

3 Create the individual view by transforming each include
relationship between use cases into a theme–subtheme
relationship preserving its direction. Derive the data entities
the theme operates on from the use case flows and attach
them to the corresponding themes.

32 / 41



Themes and Use Cases: Comparison and Transformation
Transforming Use Cases into Themes

Transforming Use Cases into Themes (2)

4 Transform all requirements use cases refer to into requirements
in the theme model. Transform each use case to requirement
relationship into a relationship between the corresponding
theme and requirement.

5 Derive the theme–relationship view by including all the themes
in the crosscutting view and identifying shared requirements.
Transform each unspecified dependency between use cases into
a postponed relationship between the corresponding themes
preserving its direction.

33 / 41



Themes and Use Cases: Comparison and Transformation
Transforming Use Cases into Themes

Generalizations

34 / 41



Themes and Use Cases: Comparison and Transformation
Transforming Use Cases into Themes

Transforming Extend Chaining

35 / 41



Themes and Use Cases: Comparison and Transformation
Transforming Use Cases into Themes

Transforming Include Chaining

36 / 41



Themes and Use Cases: Comparison and Transformation
Transforming Use Cases into Themes

Requirements

Themes derived from use cases have no description How to
solve this:

1 Derive Theme/Doc style requirements from use cases and
requirements attached to them

2 Describe each theme according to the understanding of its
meaning obtained during the transformation and attach this
description as requirement attached to the corresponding
theme

3 Attach use cases as a kind of requirements derivative instead
of requirements to the corresponding themes

37 / 41



Themes and Use Cases: Comparison and Transformation
Summary and Discussion

Summary and Discussion

38 / 41



Themes and Use Cases: Comparison and Transformation
Summary and Discussion

What the Transformation Revealed

The way themes and use case express aspect-oriented
decomposition
Their relationship to functional decomposition and
generalization
Equivalence of mechanisms for aspect-oriented decomposition
Theme/Doc Use Case Modeling
base themes peer use cases
crosscutting relationship extend relationship

One of the main differences: themes are described indirectly by
restructured requirements, while use cases are described by
flows of events

39 / 41



Themes and Use Cases: Comparison and Transformation
Summary and Discussion

When to Apply the Transformation

Switching from themes to use cases as two ways of analysis
But also to improve the process of aspect-oriented analysis and
design based on the Theme:

1 Create the Theme/Doc model from requirements (a part of it
could be automated)

2 Transform it into use cases
3 Develop flows in use cases (to make easier creating the

Theme/UML model)
4 Develop the Theme/UML model

The limitations of theme decomposition by which a subtheme
can’t have its own subthemes can be used as a kind of a test
for functional decomposition of use cases by include
relationship

40 / 41



Themes and Use Cases: Comparison and Transformation
Summary and Discussion

Further Work

Extend the transformation to embrace the Theme/UML model
The excess information in use cases could provide a part of the
information needed for modeling Theme/UML themes, and
vice versa, the Theme/UML themes can provide flows to use
cases
Explore themes with respect to features in feature modeling

41 / 41


	Introduction
	Theme/Doc: An Example Scenario
	Transforming Themes into Use Cases
	Transforming Use Cases into Themes
	Summary and Discussion

