
Aspect-Oriented Change Realization

Aspect-Oriented Change Realization

Erasmus Mobility at Lancaster University

Lecture 1

Valentino Vranić

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies

Slovak University of Technology
Bratislava, Slovakia

vranic@fiit.stuba.sk
http://fiit.stuba.sk/~vranic/

September 16–19, 2008

1 / 49

vranic@fiit.stuba.sk
http://fiit.stuba.sk/~vranic/

Aspect-Oriented Change Realization

Overview

1 The Only Constant. . .

2 Changes as Crosscutting Concerns

3 Catalog of Changes

4 Changing a Change

5 Evaluation

6 Summary

2 / 49

Aspect-Oriented Change Realization
The Only Constant. . .

Changes

Change is the only constant in software development (and
elsewhere, too)
Change realization is expensive and slow
Code modifications are usually tracked by a version control tool
But the logic of a change as a whole vanishes without a proper
support in the programming language itself

3 / 49

Aspect-Oriented Change Realization
The Only Constant. . .

Changes as Aspects

Aspect-oriented programming enables to deal with change1 2

explicitly and directly at programming language level
The logic of a change is modularized
Changes implemented by aspects are

pluggable
reapplicable to similar applications (e.g., in a product line)

1V. Vranić, M. Bebjak, R. Menkyna, and P. Dolog. Developing Applications with Aspect-Oriented
Change Realization. Accepted to 3rd IFIP TC2 Central and East European Conference on Software
Engineering Techniques CEE-SET 2008, October 2008, Brno, Czech Republic.

2M. Bebjak, V. Vranić, and P. Dolog. Evolution of web applications with aspect-oriented design
patterns. In M. Brambilla and E. Mendes, editors, Proc. of ICWE 2007 Workshops, 2nd International
Workshop on Adaptation and Evolution in Web Systems Engineering, AEWSE 2007, in conjunction with
7th International Conference on Web Engineering, ICWE 2007, Como, Italy, July 2007.

4 / 49

Aspect-Oriented Change Realization
The Only Constant. . .

Motivating Example

Customization of web applications
A new version of the base application requires reapplication of
the customization changes at the client side

5 / 49

Aspect-Oriented Change Realization
Changes as Crosscutting Concerns

Change Requests as Crosscutting Requirements

A change is initiated by a change request
Specified in domain notions
Tends to be focused, but usually consists of several
requirements

By abstracting and generalizing the essence of a change, a
change type can be identified
Such a change type is applicable to a range of applications of
the same domain

6 / 49

Aspect-Oriented Change Realization
Changes as Crosscutting Concerns

Crosscutting Nature of Change Realizations

A change often affects many places in the code
E.g., modification of selected calls of the given method

Even if it affects a single place, we may want to keep it
separate

To be able to revert it and reapply it
Especially useful in the customization of web applications

Thus, changes can be seen as crosscutting concerns

7 / 49

Aspect-Oriented Change Realization
Changes as Crosscutting Concerns

Example Scenario

Aspect-oriented change realization will be presented on an
example scenario
A merchant who runs his online music shop purchases a
general affiliate marketing software to advertise at third party
web sites (affiliates)
Simplified affiliate marketing scheme:

A customer visits an affiliate’s site which refers him to the
merchant’s site
When the customer buys something from the merchant, the
provision is given to the affiliate who referred the sale

Affiliate marketing software has to be adapted (customized) to
the merchant’s needs through a series of changes
Assume the affiliate marketing software is written in Java
We will use AspectJ to implement changes

8 / 49

Aspect-Oriented Change Realization
Changes as Crosscutting Concerns

Aspect-Oriented Programming and AspectJ

Crosscutting concerns are implemented as aspects
Variety of aspect-oriented approaches and languages
AspectJ is the most widely used and influential aspect-oriented
language
The key issue is to identify and specify places where the
crosscutting code affects the rest of the code
Such places are called join points and they are specified by
pointcuts
Additional behavior to be performed before, after, or instead of
join points is specified in advices
Inter-type declarations enable introduction of new members
into existing types, as well as introduction of compile warnings
and errors

9 / 49

Aspect-Oriented Change Realization
Changes as Crosscutting Concerns

Domain Specific Changes

Example: adding a backup SMTP server to ensure delivery of
the notifications to users

Each time the affiliate marketing software needs to send a
notification, it creates an instance of the SMTPServer class
which handles the connection to the SMTP server

A generalization:
An SMTP server is a kind of a resource that needs to be
backed up
In general, it’s a kind of Introducing Resource Backup
Abstract, but still expressed in a domain specific way—a
domain specific change type

10 / 49

Aspect-Oriented Change Realization
Changes as Crosscutting Concerns

Domain Specific Change Implementation (1)

The crosscutting concern identified: maintaining a backup
resource that has to be activated if the original one fails
Can be implemented in a single aspect without modifying the
original code

11 / 49

Aspect-Oriented Change Realization
Changes as Crosscutting Concerns

Domain Specific Changes
class NewSMTPServer extends SMTPServer {

. . .
}
public aspect BackupSMTPServer {

public pointcut SMTPServerConstructor(URL url, String user, String password):
call(SMTPServer.new(..)) && args (url, user, password);

SMTPServer around(URL url, String user, String password):
SMTPServerConstructor(url, user, password) {
return getSMTPServerBackup(proceed(url, user, password));

}
SMTPServer getSMTPServerBackup(SMTPServer obj) {

if (obj.isConnected()) {
return obj;

}
else {

return new SMTPServerBackup(obj.getUrl(), obj.getUser(),
obj.getPassword());

}
}

} 12 / 49

Aspect-Oriented Change Realization
Changes as Crosscutting Concerns

Domain Specific Change Implementation (2)

If we abstract from SMTP servers and resources altogether,
it’s actually a class exchange
Class Exchange change type based on the Cuckoo’s Egg
aspect-oriented design pattern 3

public class AnotherClass extends MyClass {
. . .

}
public aspect MyClassSwapper {

public pointcut myConstructors(): call(MyClass.new());
Object around(): myConstructors() {

return new AnotherClass();
}

}

Class Exchange is a generally applicable change type
3R. Miles. AspectJ Cookbook. O’Reilly, 2004.

13 / 49

Aspect-Oriented Change Realization
Changes as Crosscutting Concerns

Applying a Change Type

How to give a hint to developer to use Cuckoo’s Egg for
Resource Backup?
We have to maintain a catalog of changes
Each domain specific change type is defined as a specialization
of one or more generally applicable changes

14 / 49

Aspect-Oriented Change Realization
Catalog of Changes

Applying a Change Type

To support the process of change selection, the catalog of
changes is needed
It explicitly establishes generalization–specialization
relationships between change types
The following list sums up these relationships between change
types we have identified in the web application domain (the
domain specific change type is introduced first)

15 / 49

Aspect-Oriented Change Realization
Catalog of Changes

The Catalog of Changes in Web Application Domain (1)

Integration Changes
One Way Integration: Performing Action After Event
Two Way Integration: Performing Action After Event

Grid Display Changes
Adding Column to Grid: Performing Action After Event
Removing Column from Grid: Method Substitution
Altering Column Presentation in Grid: Method Substitution

16 / 49

Aspect-Oriented Change Realization
Catalog of Changes

The Catalog of Changes in Web Application Domain (2)

Input Form Changes
Adding Fields to Form: Enumeration Modification with
Additional Return Value Checking/Modification
Removing Fields from Form: Additional Return Value
Checking/Modification
Introducing Additional Constraint on Fields: Additional
Parameter Checking or Performing Action After Event

Introducing User Rights Management: Border Control with
Method Substitution
User Interface Restriction: Additional Return Value
Checking/Modifications
Introducing Resource Backup: Class Exchange

17 / 49

Aspect-Oriented Change Realization
Catalog of Changes

Integration Changes (1)

The affiliate marketing application has to be integrated with
the newsletter software
Newsletter has to be delivered to all affiliates

After an affiliate signs up, he should be added to the newsletter
After deletion of the affiliate account, the affiliate should be
removed form the newsletter

This corresponds to Performing Action After Event
Since events are actually represented by methods, the desired
action can be implemented in an after advice:
public aspect PerformActionAfterEvent {

pointcut methodCalls(/∗ arguments ∗/): . . .;
after(/∗ arguments ∗/): methodCalls(/∗ arguments ∗/) {

performAction(/∗ arguments ∗/);
}
private void performAction(/∗ arguments ∗/) { /∗ action logic ∗/ }

}

18 / 49

Aspect-Oriented Change Realization
Catalog of Changes

Integration Changes (2)

Multiple one way integrations can be seamlessly combined to
integrate with several systems
Two Way Integration can be seen as a double One Way
Integration
Useful in data synchronization
Introducing a forum for affiliates with synchronized user
accounts for affiliate convenience would represent a Two Way
Integration

19 / 49

Aspect-Oriented Change Realization
Catalog of Changes

Introducing User Rights Management (1)

A restricted administrator account is needed in our affiliate
marketing application
It should prevent the administrator from declining and deleting
affiliates, and modifying the advertising campaigns and
banners integrated with the web sites of affiliates
This is an instance of Introducing User Rights Management

20 / 49

Aspect-Oriented Change Realization
Catalog of Changes

Introducing User Rights Management (2)

Suppose all the methods for managing campaigns and banners
are located in the campaigns and banners packages—a region
prohibited to the restricted administrator
The Border Control design pattern enables to partition an
application into regions implemented as pointcuts

pointcut prohibitedRegion(): (within(application.Proxy) && call(void ∗.∗(..)))
|| (within(application.campaigns.+) && call(void ∗.∗(..)))
|| within(application.banners.+)
|| call(void Affiliate.decline(..)) || call(void Affiliate.delete(..));

}

21 / 49

Aspect-Oriented Change Realization
Catalog of Changes

Introducing User Rights Management (3)

We need to substitute the calls to the methods in the region
with our own code that will let the original methods execute
only if the current user has sufficient rights
This can be achieved by applying Method Substitution
An around advice is applied to the method call capturing
pointcut to create a new logic of the methods to be
substituted:
public aspect MethodSubstition {

pointcut methodCalls(TargetClass t, int a): . . .;
ReturnType around(TargetClass t, int a): methodCalls(t, a) {

if (. . .) {
. . . } // the new method logic

else
proceed(t, a);

}
}

22 / 49

Aspect-Oriented Change Realization
Catalog of Changes

User Interface Restriction (1)

It is quite annoying when a user sees, but can’t access some
options due to user rights restrictions
User Interface Restriction should be applied
The previous change introduced such a problem: since the
restricted administrator can’t access advertising campaigns
and banners, he shouldn’t see them in menu either

23 / 49

Aspect-Oriented Change Realization
Catalog of Changes

User Interface Restriction (2)

Menu items are retrieved by a method
To remove the banners and campaigns items, its return value
should be modified →Additional Return Value
Checking/Modification
public aspect AdditionalReturnValueProcessing {

pointcut methodCalls(TargetClass t, int a): . . .;
private ReturnType retValue;
ReturnType around(/∗ arguments ∗/): methodCalls(/∗ arguments ∗/) {

retValue = proceed(/∗ arguments ∗/);
processOutput(/∗ arguments ∗/);
return retValue;

}
private void processOutput(/∗ arguments ∗/) {

// processing logic
}

}

24 / 49

Aspect-Oriented Change Realization
Catalog of Changes

Grid Display Changes (1)

In web applications, data are often displayed in grids, and data
input is usually realized via forms
Typical changes required on a grid are

Adding Column to Grid
Removing Column from Grid
Altering Column Presentation in Grid

If the grid is hard coded, it is difficult or even impossible to
modify it using aspect-oriented techniques
If the grid is implemented as a data driven component, we just
have to modify the data passed to the grid, i.e. apply
Additional Return Value Checking/Modification change
Otherwise, a grid must be implemented either as some kind of
a reusable component or generated by row and cell processing
methods

25 / 49

Aspect-Oriented Change Realization
Catalog of Changes

Grid Display Changes (2)

Adding Column to Grid can be performed after an event of
displaying the existing columns →Performing Action After
Event
Note that the database has to reflect the change, too
Removing Column from Grid requires a conditional execution
of the method that displays cells →Method Substitution
change

26 / 49

Aspect-Oriented Change Realization
Catalog of Changes

Grid Display Changes (3)

Alterations of a grid are often necessary due to software
localization
E.g., in some occasions the surname has to be placed before
the given names
Altering Column Presentation in Grid requires preprocessing of
all the data to be displayed in a grid before actually displaying
them

27 / 49

Aspect-Oriented Change Realization
Catalog of Changes

Grid Display Changes (4)

Altering Column Presentation in Grid may be easily achieved
by modifying the way the grid cells are rendered →Method
Substitution:

public aspect ChangeUserNameDisplay {
pointcut displayCellCalls(String name, String value):

call(void UserTable.displayCell(..)) || args(name, value);
around(String name, String value): displayCellCalls(name, value) {

if (name == "<the name of the column to be modified>") {
. . . // display the modified column

} else {
proceed(name, value);

}
}

}

28 / 49

Aspect-Oriented Change Realization
Catalog of Changes

Input Form Changes

Forms are often subject to modifications
Adding Fields to Form
Removing Fields from Form
Introducing Additional Constraint on Fields

Precondition is that forms are generated (typically from a list
of fields implemented by an enumeration), not hard coded in
HTML
In our scenario, assume the genre of the music promoted by
affiliates has to be followed
The genre field has to be added to the generic affiliate sign-up
form and profile form →Adding Fields to Form
To display the required information, we need to modify the
affiliate table of the merchant panel to display genre in a new
column

Enumeration Modification enables to add the genre field
Additional Return Value Checking/Modification must be used
to modify the list of fields being returned 29 / 49

Aspect-Oriented Change Realization
Catalog of Changes

Enumeration Modification (1)

The realization of Enumeration Modification depends on the
enumeration type implementation
Enumeration types are often represented as classes with a
static field for each enumeration value

public class Genre {
public static GenreType POP = new GenreType(1, "pop");
public static GenreType ROCK = new GenreType(2, "rock");

public ArrayList getGenreTypes() {
ArrayList types = new ArrayList();
types.add(POP);
types.add(ROCK);
return types;

}
}

30 / 49

Aspect-Oriented Change Realization
Catalog of Changes

Enumeration Modification (2)

public class GenreType {
public int id;
public String name;

public GenreType(int id, String name) {
super();
this.id = id;
this.name = name;

}
public String toString() {

return "["+id+","+name+"]";
}

}

31 / 49

Aspect-Oriented Change Realization
Catalog of Changes

Enumeration Modification (3)

We add a new enumeration value by introducing the
corresponding static field:

public aspect NewEnumType {
public static EnumValueType EnumType.NEWVALUE =

new EnumValueType(10, "<new value name>");
}

32 / 49

Aspect-Oriented Change Realization
Catalog of Changes

Enumeration Modification (4)

In our example:
public aspect NewGenre {

// new static member of Genre class
public static GenreType Genre.NEWGENRE =

new GenreType(10, "new genre name");
pointcut getGenreTypePointcut(): call(∗ Genre.getGenreTypes(..));
private ArrayList retValue;

ArrayList around() : getGenreTypePointcut() {
retValue = proceed(); // execute original function
processOutput();
return retValue; // return modified output

}
private void processOutput() {

retValue.add(Genre.NEWGENRE);
// processing logic

}
}

33 / 49

Aspect-Oriented Change Realization
Catalog of Changes

Enumeration Modification (5)

The fields in a form are generated according to the
enumeration values
The list of enumeration values is typically accessible via a
method provided by it
This method has to be addressed by an Additional Return
Value Checking/Modification change
An Additional Return Value Checking/Modification change is
sufficient to remove a field from a form
Actually, the enumeration value would still be included in the
enumeration, but this would not affect the form generation

34 / 49

Aspect-Oriented Change Realization
Catalog of Changes

Introducing Additional Constraint on Fields (1)

Additional validations on the form input data to the system
without a built-in validation →Additional Parameter Checking
applied to methods that process values submitted by the form
Key issue in Additional Parameter Checking is the pointcut: it
has to capture all the calls of the affected methods along with
their parameters

35 / 49

Aspect-Oriented Change Realization
Catalog of Changes

Introducing Additional Constraint on Fields (2)

An around advice checks whether parameters are correct:
public aspect AdditionalParameterChecking {

pointcut methodCalls(TargetClass t, int a): . . .;
ReturnType around(/∗ arguments ∗/) throws WrongParamsException:

methodCalls(/∗ arguments ∗/) {
check(/∗ arguments ∗/);
return proceed(/∗ arguments ∗/);

}
void check(/∗ arguments ∗/) throws WrongParamsException {

if (arg1 != <desired value>)
throw new WrongParamsException();

}
}

Adding a new validator to a system that already has built-in
validation is realized by simply adding it to the list of
validators →Performing Action After Event: add the validator
to the list of validators after the list initialization

36 / 49

Aspect-Oriented Change Realization
Changing a Change

Implementing a change of a change

Sooner or later there will be a need for a change whose
realization will affect some of the already applied changes
There are two possibilities to deal with this situation:

A new change can be implemented separately using
aspect-oriented programming
The affected change source code could be modified directly

Either way, the changes remain separate from the rest of the
application

37 / 49

Aspect-Oriented Change Realization
Changing a Change

Feasibility

The possibility to implement a change of a change using
aspect-oriented programming and without modifying the
original change is given by the aspect-oriented programming
language capabilities
E.g., advices in AspectJ

Unnamed, so can’t be referred to directly
adviceexecution() can be restricted by within() to a given
aspect
If an aspect contains several advices, they have to be
annotated and accessed by the @annotation() pointcut
This was impossible in AspectJ versions that existed before
Java was extended with annotations

38 / 49

Aspect-Oriented Change Realization
Changing a Change

Aspect-Oriented Refactoring

By aspect-oriented change realization, crosscutting concerns in
the application are being separated
Improves modularity (which makes easier further changes)
This may be seen as a kind of aspect-oriented refactoring
E.g., the integration with a newsletter (a kind of One Way
Integration) actually was a separation of the integration
connection, a concern of its own
Even if these once separated concerns are further maintained
by direct source code modification, the important thing is that
they remain separate from the rest of the application
Implementing a change of a change using aspect-oriented
programming and without modifying the original change is
interesting mainly if it leads to separation of another
crosscutting concern

39 / 49

Aspect-Oriented Change Realization
Evaluation

YonBan

We have successfully our approach to introduce changes into
YonBan, a student project management system developed at
Slovak University of Technology
YonBan is based on J2EE, Spring, Hibernate, and Acegi
frameworks with its architecture based on Inversion Of Control
and MVC
We implemented the following changes in YonBan:

Telephone number validator as Performing Action After Event
Telephone number formatter as Additional Return Value
Checking/Modification
Project registration statistics as One Way Integration
Project registration constraint as Additional Parameter
Checking/Modification
Exception logging as Performing Action After Event
Name formatter as Method Substitution

No original code of the system had to be modified
40 / 49

Aspect-Oriented Change Realization
Evaluation

Change Interaction

We encountered one change interaction: between the
telephone number formatter and validator
These two changes are interrelated

They would probably be part of one change request
No surprise they affect the same method
No intervention was needed

41 / 49

Aspect-Oriented Change Realization
Evaluation

Tool Support

We managed to implement the changes easily even without a
dedicated tool
To cope with a large number of changes, such a tool may
become crucial
Even general aspect-oriented programming support tools may
help
AJDT for Eclipse

Shows whether a particular code is affected by advices, the list
of join points affected by each advice, and the order of advice
execution—important to track when multiple changes affect
the same code
Advices that do not affect any join point are reported in
compilation warnings—helps detect pointcuts invalidated by
direct modifications of the application base code

42 / 49

Aspect-Oriented Change Realization
Evaluation

The Need for a Dedicated Tool

A change implementation can consist of several aspects,
classes, and interfaces (types)
The tool should keep a track of all the parts of a change

Some types may be shared among changes
Should enable simple inclusion and exclusion of changes

Inclusion and exclusion of changes is related to change
dependencies
E.g., a change may require another change or two changes
may be mutually exclusive
But dependencies can be complex as feature dependencies in
feature modeling

43 / 49

Aspect-Oriented Change Realization
Evaluation

Feature Modeling

Dependencies could be represented by feature diagrams and
additional constraints
Some dependencies between changes may exhibit only
recommending character
E.g., features that belong to the same change request
Again, feature modeling can be used to model such
dependencies with default dependency rules

44 / 49

Aspect-Oriented Change Realization
Evaluation

Related Work (1)

Maintaining change dependencies with feature modeling is
similar to constraints and preferences in SIO software
configuration management system4

Fazekas proposed an approach that enables a kind of
aspect-oriented programming on top of a versioning system5

Parts of the code that belong to one concern are marked
manually in the code
They can be easily plug in or out
But concerns remain tangled in code

4R. Conradi and B. Westfechtel. Version models for software configuration management. ACM
Computing Surveys, 30(2):232–282, June 1998.

5Z. Fazekas. Facilitating configurability by separation of concerns in the source code. Journal of
Computing and Information Technology (CIT), 13(3):195–210, Sept. 2005.

45 / 49

Aspect-Oriented Change Realization
Evaluation

Related Work (2)

Several other generally related issues have been explored
Database schema evolution with aspects6

Aspect-oriented extensions of business processes and web
services with crosscutting concerns of reliability, security, and
transactions7

6R. Green and A. Rashid. An aspect-oriented framework for schema evolution in object-oriented
databases. In Proc. of the Workshop on Aspects, Components and Patterns for Infrastructure Software
(in conjunction with AOSD 2002), Enschede, Netherlands, Apr. 2002.

7A. Charfi et al. Reliable, secure, and transacted web service compositions with AO4BPEL. In 4th
IEEE European Conf. on Web Services (ECOWS 2006), Zürich, Switzerland, Dec. 2006. IEEE
Computer Society.

46 / 49

Aspect-Oriented Change Realization
Evaluation

Related Work (3)

Increased changeability of components has been reported if
they are implemented using

Aspect-oriented programming as such8

Aspect-oriented programming with the frame technology9

Enhanced reusability and evolvability of design patterns has
been achieved by using generic aspect-oriented languages to
implement them10

8J. Li, A. A. Kvale, and R. Conradi. A case study on improving changeability of COTS-based
system using aspect-oriented programming. Journal of Information Science and Engineering,
22(2):375–390, Mar. 2006.

9N. Loughran et al. Supporting product line evolution with framed aspects. In Workshop on
Aspects, Componentsand Patterns for Infrastructure Software (held with AOSD 2004, International
Conference on Aspect-Oriented Software Development), Lancaster, UK, Mar. 2004.

10T. Rho and G. Kniesel. Independent evolution of design patterns and application logic with generic
aspects—a case study. Technical Report IAI-TR-2006-4, University of Bonn, Bonn, Germany, Apr. 2006.

47 / 49

Aspect-Oriented Change Realization
Evaluation

Related Work (4)

Other issues related to, but beyond the work presented here
include

Automatic adaptation in application evolution, such as event
triggered evolutionary actions11

Evolution based on active rules12

Adaptation of languages instead of software systems13

11F. Molina-Ortiz, N. Medina-Medina, and L. García-Cabrera. An author tool based on SEM-HP for
the creation and evolution of adaptive hypermedia systems. In Workshop Proc. of 6th Int. Conf. on
Web Engineering (ICWE 2006), New York, NY, USA, 2006. ACM Press.

12F. Daniel, M. Matera, and G. Pozzi. Combining conceptual modeling and active rules for the
design of adaptive web applications. In Workshop Proc. of 6th Int. Conf. on Web Engineering (ICWE
2006), New York, NY, USA, 2006. ACM Press.

13J. Kollár et al. Functional approach to the adaptation of languages instead of software systems.
Computer Science and Information Systems Journal (ComSIS), 4(2), Dec. 2007.

48 / 49

Aspect-Oriented Change Realization
Summary

Summary

An approach to change realization using aspect-oriented
programming
Dealing with changes at two levels: domain specific and
generally applicable change types
Change types specific to web application domain along with
corresponding generally applicable changes
Consequences of having to implement a change of a change
Evaluation of the approach has shown the approach can be
applied even without a dedicated tool support
But tool support is important in dealing with change
dependencies
This is a subject of our ongoing research

49 / 49

	The Only Constant…
	Changes as Crosscutting Concerns
	Catalog of Changes
	Changing a Change
	Evaluation
	Summary

