
Combination of Aspect-Oriented Design Patterns

Combination of Aspect-Oriented Design Patterns

Erasmus Mobility at Lancaster University

Lecture 2

Valentino Vranić

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies

Slovak University of Technology
Bratislava, Slovakia

vranic@fiit.stuba.sk
http://fiit.stuba.sk/~vranic/

September 16–19, 2008

1 / 31

vranic@fiit.stuba.sk
http://fiit.stuba.sk/~vranic/

Combination of Aspect-Oriented Design Patterns

Overview

1 Introduction

2 Generally Applicable Aspect-Oriented Change Types

3 Structural Categorization of Aspect-Oriented Design Patterns

4 Combining Aspect-Oriented Design Patterns

5 Regularity in Aspect-Oriented Design Pattern Combination

6 Related Work

7 Summary

2 / 31

Combination of Aspect-Oriented Design Patterns
Introduction

Introduction
The notion of pattern in its original sense proposed by
Alexander was indivisible of the notion of pattern language1

Software patterns are often perceived as more or less
independently applied sublimated pieces of development
experience2

We tend first to discover new patterns and then think of the
opportunities of their combination
This also applies to aspect-oriented design patterns being
discovered both on individual basis3 4 5 and as pattern
languages 6

1C. Alexander. The Timeless Way of Building. Oxford University Press, 1979.
2J. O. Coplien. The culture of patterns. Computer Science and Information Systems (ComSIS),

1(2), November 2004.
3R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming. Manning, 2003.
4R. Miles. AspectJ Cookbook. O’Reilly, 2004.
5A. Schmidmeier. Patterns and an antiidiom for aspect oriented programming. In Proc. of 9th

European Conf. on Pattern Languages of Programs, EuroPLoP 2004, Irsee, Germany, July 2004.
6S. Hanenberg, A. Schmidmeier, and R. Unland. Aspectj idioms for aspect-oriented software

construction. In Proc. of 8th European Conf. on Pattern Languages of Programs, EuroPLoP 2003,
Irsee, Germany, June 2003. 3 / 31

Combination of Aspect-Oriented Design Patterns
Generally Applicable Aspect-Oriented Change Types

The Catalog of Changes in Web Application Domain (1)

Integration Changes
One Way Integration: Performing Action After Event
Two Way Integration: Performing Action After Event

Grid Display Changes
Adding Column to Grid: Performing Action After Event
Removing Column from Grid: Method Substitution
Altering Column Presentation in Grid: Method Substitution

4 / 31

Combination of Aspect-Oriented Design Patterns
Generally Applicable Aspect-Oriented Change Types

The Catalog of Changes in Web Application Domain (2)

Input Form Changes
Adding Fields to Form: Enumeration Modification with
Additional Return Value Checking/Modification
Removing Fields from Form: Additional Return Value
Checking/Modification
Introducing Additional Constraint on Fields: Additional
Parameter Checking or Performing Action After Event

Introducing User Rights Management: Border Control with
Method Substitution
User Interface Restriction: Additional Return Value
Checking/Modifications
Introducing Resource Backup: Class Exchange

5 / 31

Combination of Aspect-Oriented Design Patterns
Generally Applicable Aspect-Oriented Change Types

Generally Applicable Aspect-Oriented Change Types

Performing Action After Event
Method Substitution
Enumeration Modification
Additional Return Value Checking/Modification
Additional Parameter Checking
Performing Action After Event
Border Control
Class Exchange = Cuckoo’s Egg

6 / 31

Combination of Aspect-Oriented Design Patterns
Generally Applicable Aspect-Oriented Change Types

Code Schemes or Patterns?

What is a pattern?
Some proclaimed aspect-oriented design patterns are quite
simple (consider Border Control)
Couldn’t the generally applicable change types be considered
as patterns?
Patterns or idioms?

7 / 31

Combination of Aspect-Oriented Design Patterns
Structural Categorization of Aspect-Oriented Design Patterns

Aspect-Oriented Programming and AspectJ

Crosscutting concerns are implemented as aspects
Variety of aspect-oriented approaches and languages
AspectJ is the most widely used and influential aspect-oriented
language
The key issue is to identify and specify places where the
crosscutting code affects the rest of the code
Such places are called join points and they are specified by
pointcuts
Additional behavior to be performed before, after, or instead of
join points is specified in advices
Inter-type declarations enable introduction of new members
into existing types, as well as introduction of compile warnings
and errors

8 / 31

Combination of Aspect-Oriented Design Patterns
Structural Categorization of Aspect-Oriented Design Patterns

Aspect-Oriented Design Patterns

A closer look at the structure of four particular aspect-oriented
design patterns
Structural categorization of aspect-oriented design patterns
Applying the combination of aspect-oriented design patterns to
the problem of class deprecation in team development
Generalize the dependencies between aspect-oriented design
patterns in their subsequent application

9 / 31

Combination of Aspect-Oriented Design Patterns
Structural Categorization of Aspect-Oriented Design Patterns

Border Control

Used to define regions in the application
The regions are intended for use by other aspects to ensure
they are applied only to appropriate places
This is convenient also when the system changes are expected

Only declarations of regions in the Border Control aspect
should be changed
Other aspects which are using these declarations will be
automatically redirected

public aspect MyRegionSeparator {
public pointcut myTypes1(): within(mypackage1.+);
public pointcut myTypes2(): within(mypackage2.+);
public pointcut myTypes(): myTypes1() || myTypes2();
public pointcut myMainMethod():

withincode(public void mypackage2.MyClass.main(..));
. . .

}

10 / 31

Combination of Aspect-Oriented Design Patterns
Structural Categorization of Aspect-Oriented Design Patterns

Cuckoo’s Egg

Enables to put another object instead of the one that the
creator expected to receive (similar to what a cuckoo does
with its eggs)
public aspect MyClassSwapper {

public pointcut myConstructors():
call(MyClass1.new()) || call(MyClass2.new());

Object around(): myConstructors() {
return new AnotherClass();

}
}

Several types can be covered by swapping
Swapping can be restricted with respect to the place of
construction
Note: the swapping object must be a subtype of the original
object class

11 / 31

Combination of Aspect-Oriented Design Patterns
Structural Categorization of Aspect-Oriented Design Patterns

Policy

Defines a policy or rules within the application
Breaking of such a rule or policy should result in issuing a
compiler warning or error
Useful in projects that involve many developers

public abstract aspect GeneralPolicy {
protected abstract pointcut warnAbout();

declare warning: warnAbout(): "Warning...";
}

public aspect MyAppPolicy extends ProjectPolicy {
protected pointcut warnAbout():

call(∗ ∗.myMethod(..)) || call(∗ ∗.myMethod2());
}

12 / 31

Combination of Aspect-Oriented Design Patterns
Structural Categorization of Aspect-Oriented Design Patterns

Exception Introduction (1)

If an advice calls a method that throws a checked exception, it
is forced to cope with it
Sometimes, it is not possible to handle the exception in the
advice, so it has to be thrown to a higher context
But in AspectJ an advice cannot declare throwing a checked
exception unless the advised joint point declared this
exception, which is unlikely since base concerns are mostly not
expected to be adapted to their aspects

13 / 31

Combination of Aspect-Oriented Design Patterns
Structural Categorization of Aspect-Oriented Design Patterns

Exception Introduction (2)

Exception Introduction7 catches a checked exception and
wrappes it into a new concern-specific runtime exceptions
public abstract aspect ConcernAspect {

abstract pointcut operations();

before(): operations() {
try {

concernLogic();
} catch (ConcernCheckedException ex) {

throw new ConcernRuntimeException(ex);
}

}
void concernLogic() throws ConcernCheckedException {

. . .
}

}

7R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming
14 / 31

Combination of Aspect-Oriented Design Patterns
Structural Categorization of Aspect-Oriented Design Patterns

Aspect-Oriented Design Pattern Categories

Each aspect-oriented design pattern comprises at least one
aspect
In the aspects of each pattern one of the three main parts of
an aspect, i.e. a pointcut, advice, or inter-type declarations,
prevails in achieving the purpose of the pattern
According to the element that dominates, aspect-oriented
design patterns can be divided into:

Pointcut patterns
Advice patterns
Inter-type declaration patterns

15 / 31

Combination of Aspect-Oriented Design Patterns
Structural Categorization of Aspect-Oriented Design Patterns

Pointcut Patterns

Border Control is a pointcut pattern
It actually contains no other elements than pointcuts
Other examples:8

Wormhole employs pointcuts to connect a method callee with
a caller so they can share their context information
Participant enables a class decide whether it will allow an
aspect to affect it by declaring an appropriate pointcut

8R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming
16 / 31

Combination of Aspect-Oriented Design Patterns
Structural Categorization of Aspect-Oriented Design Patterns

Advice Patterns

Cuckoo’s Egg is an advice pattern
Other examples:9

Worker Object Creation—aka Proceed Object10—captures the
original method execution into a runnable object to be
manipulated further
Exception Introduction resolves inability of advices in AspectJ
to throw checked exceptions

9R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming
10A. Schmidmeier. Patterns and an antiidiom for aspect oriented programming. In Proc. of 9th

European Conf. on Pattern Languages of Programs, EuroPLoP 2004, Irsee, Germany, July 2004.
17 / 31

Combination of Aspect-Oriented Design Patterns
Structural Categorization of Aspect-Oriented Design Patterns

Inter-Type Declaration Patterns

Policy is an inter-type declaration pattern
Another example is Default Interface Implementation11 which
employs inter-type declarations to introduce fully implemented
methods into interfaces.
Denoted as idiom by Laddad

11R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming
18 / 31

Combination of Aspect-Oriented Design Patterns
Combining Aspect-Oriented Design Patterns

Invoking an Example: Class Deprecation

Team development requires developers to obey some common
rules and policies
Frequently, a new version of a class is introduced into the
framework
The old version of the class cannot be simply replaced with the
new one at once
A new class has to be tested for some time during which it is
common to have and use both versions
All developers should be kept informed of the new class version
and warned—or sometimes even forced—to use it
The best way is to incorporate this information into the build
process (compilation warnings and errors)
Sometimes a new version should swap the old one

19 / 31

Combination of Aspect-Oriented Design Patterns
Combining Aspect-Oriented Design Patterns

Class Deprecation Warning

Suppose the instantiation of OldClass is deprecated
Assume it is sufficient to issue a warning in case of deprecated
class instantiation
Policy can be applied to achieve this
public aspect OldClassDeprecation {

declare warning: call(∗.OldClass.new()): "Class OldClass deprecated.";
}

AspectJ 5 supports declaring annotations, so a standard
@deprecated annotation can be introduced instead of a general
warning with a custom message
public aspect OldClassDeprecation {

declare @constructor: OldClass.new(): @deprecated;
}

This approach was not used because annotations declarations
are made on type patterns, not pointcuts, which poses
significant limitations 20 / 31

Combination of Aspect-Oriented Design Patterns
Combining Aspect-Oriented Design Patterns

Partial Class Deprecation (1)

Assume OldClass can be used within the testing package and
third party code
Border Control can be applied to partion the code into regions
public aspect Regions {

public pointcut Testing(): within(com.myapplication.testing.+);
public pointcut MyApplication(): within(com.myapplication.+);
public pointcut ThirdParty(): within(com.myapplication.thirdpartylibrary.+);
public pointcut ClassSwitcher(): within(com.myapplication.ClassSwitcher);

}

Afterwards, OldClassDeprecation aspect has to be adapted:
public aspect OldClassDeprecation {

protected pointcut allowedUse():
Regions.ThirdParty() || Regions.Testing();

declare warning:
call(Display.new()) && !allowedUse(): "Class OldClass deprecated.";

}
21 / 31

Combination of Aspect-Oriented Design Patterns
Combining Aspect-Oriented Design Patterns

Partial Class Deprecation (2)

By this, we actually combined a Policy with an existing Border
Control
Thus, combining a pointcut pattern with an existing inter-type
declaration pattern requires changes in the existing inter-type
declaration pattern
If we knew there will be exemptions from banning the use of
OldClass, it would be possible to apply Border Control first
with Policy pattern added without having to change the
existing code
Thus, combining an inter-type declaration pattern with an
existing pointcut pattern can be performed without having to
change the existing pattern

22 / 31

Combination of Aspect-Oriented Design Patterns
Combining Aspect-Oriented Design Patterns

Class Swapping

Now we want to make a change from OldClass to NewClass
automatic while keeping developers informed of attempts to
instantiate OldClass in prohibited regions
This may be achieved with Cuckoo’s Egg
public aspect OldClassDeprecation {

public pointcut oldClassConstructor():
call(∗.OldClass.new()) &&
!Regions.ThirdParty() && !Regions.Testing();

Object around(): oldClassConstructor() {
return new MyApplication.NewClass();

}
}

Cuckoo’s Egg uses the pointcuts defined in Border Control
Thus, combining an advice pattern with an existing pointcut
pattern can be made without changes in the existing pointcut
pattern 23 / 31

Combination of Aspect-Oriented Design Patterns
Combining Aspect-Oriented Design Patterns

Adding Logging (1)

Assume there is a need to log the swapping of the deprecated
class with the new one
It looks simple: the logging code could be simply added to the
Cuckoo’s Egg advice
But we have to deal with IOException in the advice, and an it
can’t declare throwing of an exception that was not declared
by the advised join point

24 / 31

Combination of Aspect-Oriented Design Patterns
Combining Aspect-Oriented Design Patterns

Adding Logging (2)

Exception Introduction can resolve this
public class SwitchLoggingException extends RuntimeException {

public SwitchLoggingException(Throwable cause) { super(cause); }
}

public aspect SwitchLogging {
before(): adviceexecution() && Regions.ClassSwitcher() {

try {
logSwapEvent()

} catch(IOException e) {
throw new SwitchLoggingException(e);

}
}

Exception Introduction was added to the existing Cockoo’s
Egg without having to modify it
It also uses pointcuts from the already applied Border Control

25 / 31

Combination of Aspect-Oriented Design Patterns
Regularity in Aspect-Oriented Design Pattern Combination

What Combinations Require Changes? (1)

Combination of aspect-oriented design patterns is substantially
affected by their structural category
Under a combination of two patterns we understand a
subsequent interrelated application of two patterns to a
problem at hand
Thanks to the crosscutting nature of aspects, most
aspect-oriented design patterns can be combined with other
patterns without the need to modify the already applied
patterns
Exception Introduction can simply be added to the program
without having to make any change to already applied patterns

26 / 31

Combination of Aspect-Oriented Design Patterns
Regularity in Aspect-Oriented Design Pattern Combination

What Combinations Require Changes? (2)

Policy can be used with other, already applied patterns
without having to make any changes to them
It is also possible to combine a pointcut pattern with another
pattern of the same type without having to change that
pattern (Wormhole and Border Control)
However, combining a pointcut pattern with an already applied
advice or inter-type declaration pattern usually requires a
change of this pattern (Policy and Border Control)
If we go the other way around, i.e. if we combine an inter-type
declaration pattern (e.g., Policy) or advice pattern (e.g.,
Cuckoo’s Egg) with an already applied pointcut pattern (e.g.,
Border Control), this can be done without having to change
them
Also, if we combine a non-pointcut pattern with Participant, it
has to be altered

27 / 31

Combination of Aspect-Oriented Design Patterns
Regularity in Aspect-Oriented Design Pattern Combination

What Combinations Require Changes? (2)

28 / 31

Combination of Aspect-Oriented Design Patterns
Related Work

Related Work (1)

Hanenberg et al. present a set of AspectJ idioms and a
scheme for their interrelated application12 (similarly to the
well-known scheme of GoF patterns)
However, no attempt is made to categorize the idioms
Analogy between categories proposed here and those proposed
by Gamma et al. (behavioral, structural, and creational)13

Advice patterns recall behavioral patterns since they affect
behavior
Pointcut patterns deal with how aspects are composed with
classes, objects, and other aspects, which is a paraphrase of
the description of structural patterns
Inter-type declarations correspond to creational patterns to a
lesser extent, but we may see them as patterns of creating new
elements and relationships

12S. Hanenberg, A. Schmidmeier, and R. Unland. Aspectj idioms for aspect-oriented software
construction. In Proc. of 8th European Conf. on Pattern Languages of Programs, EuroPLoP 2003,
Irsee, Germany, June 2003.

13E. Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995. 29 / 31

Combination of Aspect-Oriented Design Patterns
Related Work

Related Work (2)

Class deprecation in team development can be seen as a
change and as such it is related to a broader area of change
control
Aspects can be used to capture change14 15

Captured in an aspect, a change becomes pluggable and
reapplicable

14V. Vranić, M. Bebjak, R. Menkyna, and P. Dolog. Developing Applications with Aspect-Oriented
Change Realization. Accepted to 3rd IFIP TC2 Central and East European Conference on Software
Engineering Techniques CEE-SET 2008, October 2008, Brno, Czech Republic.

15M. Bebjak, V. Vranić, and P. Dolog. Evolution of web applications with aspect-oriented design
patterns. In M. Brambilla and E. Mendes, editors, Proc. of ICWE 2007 Workshops, 2nd International
Workshop on Adaptation and Evolution in Web Systems Engineering, AEWSE 2007, in conjunction with
7th International Conference on Web Engineering, ICWE 2007, Como, Italy, July 2007.

30 / 31

Combination of Aspect-Oriented Design Patterns
Summary

Summary

A categorization of aspect-oriented design patterns has been
presented
Three categories: pointcut, advice, and inter-type declaration
patterns
This categorization can be used in determining whether a
combination of an aspect-oriented design pattern with another,
already applied pattern requires a change in this pattern
Combination of aspect-oriented design patterns of different
categories presented on the class deprecation problem in team
development
Combination of Policy, Border Control, Cuckoo’s Egg, and
Participant
Further work involves exploring the possibilities of employing
aspect-oriented design patterns and their combinations in
capturing changes in a pluggable and reapplicable way

31 / 31

	Introduction
	Generally Applicable Aspect-Oriented Change Types
	Structural Categorization of Aspect-Oriented Design Patterns
	Combining Aspect-Oriented Design Patterns
	Regularity in Aspect-Oriented Design Pattern Combination
	Related Work
	Summary

