
Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Multi-Paradigm Design with Feature Modeling in
Aspect-Oriented Software Development

Erasmus Mobility at Lancaster University

Lecture 3

Valentino Vranić

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies

Slovak University of Technology
Bratislava, Slovakia

vranic@fiit.stuba.sk
http://fiit.stuba.sk/~vranic/

September 16–19, 2008

1 / 45

vranic@fiit.stuba.sk
http://fiit.stuba.sk/~vranic/

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development

Overview

1 Introduction

2 Feature Modeling

3 Aspect-Orientation and Software Product Lines

4 Multi-Paradigm Design with Feature Modeling for AspectJ

5 Summary

2 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Introduction

Introduction

Notion of paradigm1

large-scale view—traditional (object-oriented programming,
functional programming, etc.); imprecise
small-scale view—paradigms as configurations of commonality
and variability (map to directly to language mechanisms)

Programming languages are often categorized according to
(large-scale) paradigms they support
Multi-paradigm languages: are there any other?
Multi-paradigm design: how to select a paradigm appropriate
for the problem being solved
Multi-paradigm design with feature modeling for AspectJ

1V. Vranić. Towards multi-paradigm software development. Journal of Computing and Information
Technology (CIT), 10(2): 133-147, 2002.

3 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Introduction

Multi-Paradigm Design with Feature Modeling

Transformational Analysis

Application Domain Feature Modeling Solution Domain Feature Modeling

Code Skeleton Design

solution domain feature model
(paradigm model)

application domain feature model

application to solution domain mapping
(paradigm instances)

code skeleton

application domain related information solution domain related information

4 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Feature Modeling

Feature Modeling

Captures connections among features and variability
Feature model: a set of feature diagrams plus additional
information
Based on the notions of domain, concept, and feature

Features: common and variable
Concept instances: concept specializations

Various notations exist, e.g. FODA, ODM, or
Czarnecki-Eisenecker
Notation used here is based on Czarnecki-Eisenecker feature
modeling adapted to multi-paradigm design2

2V. Vranić. Reconciling Feature Modeling: A Feature Modeling Metamodel. In M. Weske and
P. Liggesmeyer, Eds., Proc. of 5th Annual International Conference on Object-Oriented and
Internet-Based Technologies, Concepts, and Applications for a Networked World (Net.ObjectDays
2004), Erfurt, Germany, Sept. 2004. Springer.

5 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Feature Modeling

Feature Variability (1)

Text Editing Buffer

load file
File

Character Set

cursor position

number of lines

Memory Management

Debugging Code

save file

insert text

remove text

Mandatory features (edges ended by filled circles)
Optional features (edges ended by empty circles)

6 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Feature Modeling

Feature Variability (2)

Text Editing Buffer

load file
File

Character Set

cursor position

number of lines

Memory Management

save file

insert text

remove text
Debugging Code

reading

writing

inserting line

removing line

ASCII UNICODE

File Memory Management

Alternative features (empty arc)
Or-features (filled arc)

7 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Feature Modeling

Feature Variability (3)

Text Editing Buffer

load file
File

Character Set

cursor position

number of lines

Memory Management

save file

insert text

remove text
Debugging Code

reading

writing

inserting line

removing line

ASCII UNICODE

File Memory Management

Arcs modify the meaning of edges
Mandatory/Optional alternative features
Mandatory/Optional or-features

8 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Feature Modeling

Feature Variability (4)

Text Editing Buffer

load file
File

cursor position

number of lines

Memory Management

save file

... insert text

remove text
Debugging Code

File Memory Management

reading

writing

inserting line

removing line

[Character Set]

ASCII UNICODE

Open features
Further variable subfeatures are expected
Denoted by square brackets; ellipsis is sometimes added

9 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Feature Modeling

Feature Variability (5)

Text Editing Buffer

load file
File(R)

[Character Set]

cursor position

number of lines

Memory Management(R)

save file

ASCII UNICODE

... insert text

remove text
Debugging Code

File Memory Management

reading

writing

inserting line

removing line

A feature can be included into a concept instance only if its
parent has been included
Features of all types may appear at any level

10 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Feature Modeling

Concept References

File(R)

Memory Management(R)

Debugging Code(R)

Text Editing Buffer

load file

[Character Set]

cursor position

number of lines

save file

ASCII UNICODE

... insert text

remove text

Denoted by R© ((R) in diagrams in this presentation)
May be expanded as needed

11 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Feature Modeling

Binding time/mode

Text Editing Buffer

load file
File(R)

[Character Set]

cursor position

number of lines

Memory Management(R)

save file

ASCII UNICODE

... insert text

remove text
static

static
Debugging Code

File Memory Management

reading

writing

inserting line

removing line

static

Binding time/mode
When/how a feature will be bound
Common binding times are source code, compile, link, load,
and runtime
Biding mode: static or dynamic

12 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Feature Modeling

Additional Information in Feature Models

Information associated with concepts and features
Textual information: description, presence rationale, inclusion
rationale, note
Binding time/mode

Constraints and default dependency rules
An example constraint:

f1 ⇒f6
C1

[f3]f2f1 f4

f6f5 f7

...

C1

f3f1 f4

f7

C1

f3f2 f4

f6

13 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Feature Modeling

Concept instantiation

C1

[f3]f2f1 f4

f6f5 f7

source time run time

compile time

...

C1

[f3]f2 f4

f6f5 f7

run time

compile time

C1

f3f2 f4

f5 f7

run time

source time run timecompile time t

C1

f3f2 f4

f5 f7

...

14 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Feature Modeling

Parameterization in Feature Models

Parameterized feature and concept names
Constraint: ∀ <i> ∈ N p<i>.h ∨ g

C

g

...
p1

[f]

p2

h
h

Parameterized concepts
[<Plural Form>]

<Singular Form> 1

<Singular Form>

<Singular Form> 2

<Singular Form>

...

15 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Aspect-Orientation and Software Product Lines

Aspects and Variability (1)

In traditional approaches to implementation, the given feature
code may be scattered across several components
This is especially important for variable features, because they
are being bound and unbound according to the choosen
configuration
Lee et al.:3

Common features implemented as usual
Variable features implemented with aspects

3Lee et al. Combining Feature-Oriented Analysis and Aspect-Oriented Programming for Product
Line Asset Development. In Proc. of 10th International Software Product Line Conference, Aug. 2006.
IEEE Cpmputer Society.

16 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Aspect-Orientation and Software Product Lines

Aspects and Variability (2)

In reality, a more thorough analysis is needed for each feature
in order to determine how it should be implemented
General rules of aspect-oriented approach apply: features that
crosscut other features should be implemented in the
aspect-oriented way regardless of being variable or not
Specific issues related to product lines should be considered
(with respect to feature interdependencies)
Binding time should be considered, too

17 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Aspect-Orientation and Software Product Lines

Feature Interaction Problem

Some features depend on other features
A feature may require the presence or absence of another
feature
This relationship may be uni- or bidirectional
Abstract aspects—the way how to separate dependencies

Dependencies are implemented as concrete pointcuts in
concrete aspects
The functionality itself is in an abstract aspect

18 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Multi-Paradigm Design with Feature Modeling

Multi paradigm design with feature modeling (MPDfm)4 — a
method for paradigm selection
Software development process can be viewed as a mapping of
the application (problem) domain to the solution domain
Software development paradigm then determines how to
express application domain concepts in terms of solution
domain concepts
Concepts of the solution domain correspond to programming
language mechanisms
Individual concepts of the solution domain (e.g., class in Java)
may be considered as paradigms
The approach is based on Coplien’s multi-paradigm design5

4Valentino Vranić. Multi-paradigm design with feature modeling. Computer Science and
Information Systems Journal (ComSIS). 2(1): 79–102, 2005.
http://comsis.fon.bg.ac.yu/ComSIS/Vol2No1/RegularPapers/VVranic.htm

5J. O. Coplien. Multi-Paradigm Design for C++. Addison-Wesley, 1998.
(J. O. Coplien. Multi-Paradigm Design. PhD thesis, Vrije Universiteit Brussel, 2000.
http://users.rcn.com/jcoplien/Mpd/Thesis/Thesis.pdf) 19 / 45

http://comsis.fon.bg.ac.yu/ComSIS/Vol2No1/RegularPapers/VVranic.htm
http://users.rcn.com/jcoplien/Mpd/Thesis/Thesis.pdf

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Coplien’s Multi-Paradigm Design

� � � � � � � � � �
��

9DULDELOLW\�WDEOHV��IURP�DSSOLFDWLRQ�GRPDLQ�6&95�DQDO\VLV��

&RPPRQDOLW\� 9DULDELOLW\� %LQGLQJ� ,QVWDQWLDWLRQ� /DQJXDJH�0HFKDQLVP�
��������

��������
$OJRULWKP�
�HVSHFLDOO\�PXOWLSOH���
DV�ZHOO�DV��RSWLRQDO��
GDWD�VWUXFWXUH�DQG�
VWDWH�

&RPSLOH�
WLPH�

2SWLRQDO� ,QKHULWDQFH�
5HODWHG�
RSHUDWLRQV�DQG�
VRPH�VWUXFWXUH�
�SRVLWLYH�
YDULDELOLW\��

$OJRULWKP��DV�ZHOO�DV�
�RSWLRQDO��GDWD�
VWUXFWXUH�DQG�VWDWH�

5XQ�WLPH� 2SWLRQDO� 9LUWXDO�IXQFWLRQV�

�

�

3DUDPHWHUV�RI�YDULDWLRQ� 0HDQLQJ� 'RPDLQ� %LQGLQJ� 'HIDXOW�
2XWSXW�PHGLXP�
6WUXFWXUH��$OJRULWKP�

«� 'DWDEDVH��5&6�ILOH��
77<��81,;�ILOH�

5XQ�WLPH� 81,;�ILOH�
� � � � �

7H[W�(GLWRU�9DULDELOLW\�$QDO\VLV�IRU�&RPPRQDOLW\�GRPDLQ��
7(;7�(',7,1*�%8))(56��&RPPRQDOLW\��%HKDYLRU�DQG�6WUXFWXUH��

)DPLO\�WDEOH��IURP�VROXWLRQ�GRPDLQ�6&95�DQDO\VLV��

20 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

MPDFM Activities (repeated)

Transformational Analysis

Application Domain Feature Modeling Solution Domain Feature Modeling

Code Skeleton Design

solution domain feature model
(paradigm model)

application domain feature model

application to solution domain mapping
(paradigm instances)

code skeleton

application domain related information solution domain related information

21 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Modeling Paradigms in MPDFM

Paradigm identification
Directly and indirectly usable paradigms
Paradigm hierarchy

Binding time identification
Determining the sequence of binding times available in the
solution domain
E.g., in AspectJ method body has the runtime binding

First-level paradigm model
Modeling individual paradigms

22 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

First-Level Paradigm Model

First-level paradigm model consists of directly usable
paradigms

Features of the solution concept
Introduced as concept references (usually in plural)
Their variability and binding time has to be determined

Example: AspectJ first-level paradigm model

Classes(R) Interfaces(R) Inheritances(R) Aspects(R)

AspectJ Program

23 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Modeling Individual Paradigms

Each paradigm is introduced in a separate feature diagram
Solution domain concepts
May refer one to another

Auxiliary concepts
Concepts that paradigms refer to
But they are not considered to be paradigms themselves

Binding time (variable features)
Instantiation (e.g., class–objects) is modeled with features

24 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Structures and Relationships

Structural paradigms correspond to the main constructs
(structures) of the programming language
Relationship paradigms are about relationships among the
programming language structures
In transformational analysis a node in the application domain
feature model

May correspond to the root of a structural paradigm
But can’t correspond to the root of a relationship paradigm

25 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

AspectJ Aspect-Oriented Paradigms

Aspect paradigm—stuctural paradigm (modularization)
A container for further aspect-oriented paradigms: advice,
pointcut, and inter-type declaration
These paradigms are structural paradigms (corresponds to
their task—to capture crosscutting concerns)

26 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Aspect
Aspect

Inter-type Declarations(R)

Advices(R)

Fields
Methods(R)

privileged

Instantiation policy

singleton
per object

per control flow

Classes(R)

Aspects(R)

Interfaces(R)

Name

Inheritances(R)

Pointcuts(R)

final
Scope

Access(R)

abstract

Pointcut(R)

Pointcut(R)

static

whole

below

Access

private protected public package

Constraint: abstract ∨ final
27 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Advice and Pointcut

Advice

aroundafter

throwingreturning

before

Body

Pointcut(R)

context

Return value type

Type(R)Type(R) Type(R)

Type

Class(R)
Interface(R) Aspect(R)

Pointcut

context

BodyName

Static join points Dynamic join points

abstractfinal

Access(R)

Join points Join points

compile time run time Constraints:

1 abstract ∨Body
2 Access ⇒Name

28 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis in MPDFM

Bottom-up instantiation of paradigms over application domain
concepts at source time
Application domain concepts are considered one by one

1 The corresponding structural paradigm is determined
2 The corresponding relationship paradigms for each relationship

in it are determined

29 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Paradigm Instantiation in MPDFM

Paradigm instantiation in MPDFM is actually concept
instantiation

Understood as concept specialization
Concept instances are represented by feature diagrams
Binding time is being taken into account

Bottom-up instantiation
Inclusion of paradigm nodes is determined by the mapping of
the nodes of application domain concepts

Conceptual correspondence
Binding time correspondence

30 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (1)

Text Editing Buffer

load file
File(R)

[Character Set]

cursor position

number of lines

Memory Management(R)

save file

ASCII UNICODE

... insert text

remove text
static

static
Debugging Code

File Memory Management

reading

writing

inserting line

removing line

static

31 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (2)

Text Editing Buffer

load file
File(R)

[Character Set]

cursor position

number of lines

Memory Management(R)

save file

ASCII UNICODE

... insert text

remove text
static

static
Debugging Code

static

File Memory Management

reading

writing

inserting line

removing line

32 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (3)

Debugging Code

File Memory Management

reading

writing

inserting line

removing line

static

33 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (4)

File

reading

writing

Debugging Code

Memory Management

inserting line

removing line

static

34 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (5)

Debugging Code.File(R)

Debugging Code

Memory Management

inserting line

removing line

static Debugging Code.File

reading writing

Advice

aroundafter

throwingreturning

before

Body

Pointcut(R)context

Return value type

Type(R)Type(R) Type(R)

35 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (6)

Debugging Code.File(R)

Debugging Code

Memory Management

inserting line

removing line

static Debugging Code.File

reading writing

Advice

aroundafter

throwingreturning

before

Body

Pointcut(R)
context

Return value type

Type(R)Type(R) Type(R)
Debugging Code.File.reading

36 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (7)

Debugging Code.File(R)

Debugging Code

Memory Management

inserting line

removing line

static Debugging Code.File

reading writing

Pointcut

context
Name

Static join points Dynamic join points

abstractfinal

Access(R)

Join points Join points

Advice

aroundafter

throwingreturning

before

Body

context

Return value type

Type(R)Type(R) Type(R)
Debugging Code.File.reading

Body

compile time run time

37 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (8)

Debugging Code.File(R)

Debugging Code

Memory Management

inserting line

removing line

static Debugging Code.File

reading writing

run timecompile time

Advice

aroundafter

throwingreturning

before

Body

context

Return value type

Type(R)Type(R) Type(R)
Debugging Code.File.reading

Pointcut

context

Body

Static join points Dynamic join points

final

Access(R)

Join points Join points

38 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (9)

Debugging Code.File(R)

Debugging Code

Memory Management

inserting line

removing line

static Debugging Code.File

reading writing

Advice

aroundafter

throwingreturning

before

Body

context

Return value type

Type(R)Type(R) Type(R)
Debugging Code.File.reading

Pointcut

context

Body

Dynamic join points

final

Join points

run time

calls to File.read

 File object

 File object

39 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (10)

Debugging Code.File(R)

Debugging Code

Memory Management

inserting line

removing line

static Debugging Code.File

reading writing

Advice

before

Body

context

Debugging Code.File.reading

Pointcut

context

Body

Dynamic join points

final

Join points

run time

calls to File.read

 File object

 File object

40 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (11)

Debugging Code.File.reading

Advice

before

Body

Pointcut

calls to File.read

context

Body

Dynamic join points

final
 File object

Join points

context

 File object

41 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (12)

Debugging Code.File.reading
Debugging Code.File.writing

Advice

after

returning

Body

Advice

before

Body

Pointcut

calls to File.read

context

Body

Dynamic join points

final
 File object

Pointcut

calls to File.write

context

Body
final

Join points

Dynamic join points

Join points

context
context

 File object
 File object

 File object

42 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Transformational Analysis Example (13)

Aspect

Advices

Instantiation policy

single

Name
Scope

Access

Debugging Code.File.reading

FileDebug

Debugging Code.File.writing

Advice

after

returning

Body

Advice 1
Advice 2

Advice

before

Body

Pointcut

calls to File.read

context

Body

Dynamic join points

final
 File object

package

Pointcut

calls to File.write

context

Body
final

Debugging Code.File

Join points

Dynamic join points

Join points

context
context

 File object
 File object

 File object

43 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Multi-Paradigm Design with Feature Modeling for AspectJ

Code Skeleton Design

Code is designed by traversing the trees of paradigm instances
Structural paradigm instances are considered first
Example: the aspect of the file debugging code

aspect FileDC {
before(File f): target(f) && call(∗ File.read(..)) {

. . .
}

after(File f): target(f) && call(∗ File.write(..)) {
. . .

}
}

44 / 45

Multi-Paradigm Design with Feature Modeling in Aspect-Oriented Software Development
Summary

Summary

MPDFM: a method of paradigm selection based on feature
modeling
Paradigms are viewed as solution domain concepts
The key activity: transformational analysis performed as a
bottom-up paradigm instantiations over application domain
concepts
Transformational analysis can be applied to all application
domain concepts, but can also be restricted to critical ones
The AspectJ paradigm model
Further research:

Use of MPDFM for early aspect identification
Use of feature modeling adapted to MPDFM to deal with the
interaction of aspect-oriented change realizations

45 / 45

	Introduction
	Feature Modeling
	Aspect-Orientation and Software Product Lines
	Multi-Paradigm Design with Feature Modeling for AspectJ
	Summary

