Creating, Composing, and Recognizing Multisensor
Gestures 1n Mobile Devices

Miroslav Takdcs and Valentino Vranié
Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava
Ilkovi¢ova 2, Bratislava, Slovakia
t.mir099 @gmail.com, vranic @stuba.sk

Abstract—The work reported here focuses on creating, com-
posing, and recognizing multisensor gestures and their use in
terms of remotely controlling another device. The approach al-
lows to compose gestures synthetically, i.e., by recording complex
gestures directly as they are performed, and analytically, i.e.,
by selecting and composing existing gestures to define more
complex ones. Analytical gesture composition doesn’t have to be
sequential: the gestures can be superposed. We explored this in
a setting of using a mobile device to control a remote device.
In our case, this was a smartphone controlling a computer,
which we assume to be most probable setting in practice. For
this, a client-server system was developed consisting of the
application running on the Android mobile device using the
accelerometer, proximity sensor, touchscreen, and ambient light
sensor to capture gestures. The server-side application that runs
on a computer was developed to store and recognize gestures.
The preliminary evaluation results are promising exhibiting the
85% rate in the ability of users to replicate gestures not created
by them. According to informal observations, the user seem to be
quite comfortable working with their own multisensor gestures.

Keywords—mobile device; multisensor gesture; gesture compo-
sition; gesture recognition; dynamic time warping; Android

I. INTRODUCTION

Today’s mobile devices contain a number of integrated
sensors. Typically, these include accelerometer, gyroscope,
GPS, compass, and proximity sensor. The touch display can be
considered as yet another sensor: perhaps the one mostly used
to control applications. The input to other sensors is also used
to control applications implicitly, such as when the application
changes its behavior based on location obtained from the GPS
sensor, or explicitly, such as controlling a car racing game
using the accelerometer or magnetometer.

The mobile device sensors work simultaneously and this
can be used as a basis for establishing a complex, multisensor
control. In effect, this requires users to become comfortable
with quite sophisticated actions with their devices such as
moving their device down while sliding with a finger across
the display. These are actually complex, multisensor gestures.

The idea of allowing users to define their own gestures and
attach the behavior of their choice to them is not new and not
even limited to mobile devices. One or multifinger gestures can
be defined for most contemporary touchpad devices. However,
employing multiple sensors at once to activate desired behavior
is explored only to a limited extent.

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Here we go one step further and propose an approach to
defining complex multisensor gestures in mobile devices and
their recognition. The approach allows to compose gestures
synthetically, i.e., by recording complex gestures directly as
they are performed, and analytically, i.e., by selecting and
composing existing gestures to define more complex ones. We
explored this in a setting of using a mobile device to control a
remote device. In our case, this was a smartphone controlling
a computer, which we assume to be most probable setting in
practice.

Section II takes a look at gestures in mobile devices.
Section III proposes a new approach to treating gesture com-
position. Section IV explains the recognition of composed
gestures. Section V presents the evaluation results. Section VI
discusses related work. Section VII concludes the paper.

II. GESTURES IN MOBILE DEVICES

Mobile devices receive the input from the user using
sensors. Many smartphones do not have hardware keyboard
and they use a software keyboard on the touch screen instead.
Thus, the touch screen is the most used and most important
sensor in mobile devices. It responds to two-dimensional
gestures, and provides output in the form of images or text.
Another possible way of obtaining input from the user is by
using motion gestures [1].

A gesture should be easy to remember and easy to use. It
should not be overly complicated, so that users can replicate it
quick enough. Gesture recognition should be efficient, so that
the system can make actions in real time. The error rate in
gesture recognition must be minimal, i.e., the system must be
capable of differentiating similar gestures.

A. Sensors for Multisensor Gestures

Multisensor gestures are virtually superposed single-sensor
gestures. The accelerometer as a very common sensor in mo-
bile devices provides a plenty of opportunities to be employed
in gestures. A gesture based on the accelerometer activation is
in fact a trajectory obtained by a continuous measurement of
the orientation of the mobile device in space. More specifically,
the accelerometer measures the effect of the gravitational force
on the device in three coordinate axes. The measured values
are relative to the free fall. A typical use of the accelerometer
is to automatically adjust the display orientation depending on
how the user holds the mobile device.

vranic
IEEE (C) 2015

Other sensors can also be used in building complex,
multisensor gestures. The proximity sensor detects whether
there is an object near the mobile device without the need for
a physical contact. The output of this sensor is the distance of
the object, which is typically zero if an object was detected,
and non-zero if it wasn’t. The touch sensor can be used
for obtaining the information that indicates the number of
fingers on the touchpad. The ambient light sensor detects the
surrounding brightness near the mobile device. Gestures using
this sensor are dependent on the level of light around the
device. The output of the sensor could be used as a parameter,
for example setting the brightness level. Gyroscope can be
used similarly. Output of this sensor is value depending on the
rotation of the device. For example, gyroscope sensor can be
used for setting volume, depending on rotation of the device.

B. Gesture Types

According to the type of the sensor employed, the gestures
can be categorized as touch (two-dimensional) or motion
(three-dimensional). The touchscreen sensor is used as the
main input device. It detects the position of the finger or other
touching object (stylus) on the screen. Using the touch screen
is simple and intuitive and therefore it has become very popular
in mobile devices.

Touch gestures can also use multiple touches at once, which
is known as multi-touch: “an interface technology that enables
input through pressure and gestures on multiple points on
the surface of a device” [2]. This allows users to use the
touch screen gestures. The simplest is the tap gesture. Other
commonly used gestures are scrolling, zooming, and rotating.
The term gesture can also refer to making a specific shape with
the finger on the touchscreen. The mobile device touchscreen
can be used to control the pointer on a computer, i.e., as a
remote touchpad, or for detecting two-dimensional gestures
that start different actions.

Motion gestures are created by moving or rotating the
mobile device in space. Motion gestures have an advantage
in users not having to focus their sight on the mobile device
screen. As we already pointed out, the accelerometer is prob-
ably the best sensor to use with motion gestures. A typical
motion gesture is the shake gesture.

According to the complexity, the gestures can be catego-
rized as elementary or composed. From the perspective of
gesture recognition, an elementary gesture can be defined as a
sequence of the output values of one sensor that constitutes one
indivisible action. For example, moving a mobile device to the
right is an elementary gesture. Elementary gestures are usually
short. They can be based on any sensor, not only accelerometer.

A composed gesture consists of other gestures, be they
elementary or composed gestures. There are two ways to
compose gesture: serial and parallel (superposed) composition.
These are going to be explained in the further text.

III. COMPOSING GESTURES

As has been shown, users can perform the gesture they
created with a greater success than the predefined ones [1].
A new gesture can be created directly by recording it or by
composing already recorded gestures.

A. Gesture Representation

Analogically to a one-sensor gesture (Section II), a multi-
sensor gesture can be defined as a combination of the output
values of the sensors within a certain time period. These output
values are recorded in regular time intervals. The saved gesture
must contain the information about the sensors that have been
used. This is important for sending the gesture over a network
and for comparing gestures. Furthermore, the gesture has to
contain the actual output values of the sensors represented as
decimal values. Optionally, gestures can have a name attribute
for easier identification.

Figure 1 shows output values of the accelerometer sensor.
The y-axis in graphs shows the acceleration in space detected
by the sensor measured in m/s?. The x-axis represents the
time in seconds. The output values of the sensors are recorded
in regular time intervals. This figure is a screenshot taken from
the created application. In the x-axis, there is visible activity
of the accelerometer caused by moving the mobile device to
the right.

B. Composing Gestures Synthetically

Multisensor gestures can be recorded directly on a mobile
device by simultaneously recording the output of the involved
sensors. This way, individual sensor gestures are composed in
a synthetic manner.

In our application, before the actual recording, the sensors
that are going to be used have to be selected. The recording
can start by pressing a button, but a better alternative is to
start it automatically when device detects the activity such as
motion. The recording can be stopped the same way: when
device is no longer moving. The output values of the sensors
are stored in an array or some collection in regular intervals.
Our experiments indicate that the interval of 50 ms is quite
usable. Longer intervals decrease the rate of success gesture
recognition, while smaller intervals cause higher battery and
network usage.

There is no guarantee that the sensors will provide data
at the same time, so there is a need to synchronize the
obtained data. The output of the touch screen sensor can
be obtained directly at any time. Obtaining data from others
sensors works differently. The accelerometer and ambient light
sensors provide data at intervals, which cannot be set to a
specified value. The solution is to retrieve the data from these
sensors at shorter intervals and get the average of the values
every 50 ms. The proximity sensor is interrupt based. This
means that we get a proximity event only when the proximity
changes, so we use the last detected value. The output of this
sensor is usually only a value of 0 or 10. In our experience,
this approach worked well and, in addition, it helped to reduce
noise (a deviation from the real value caused by the sensor
inaccuracy) in the accelerometer sensor.

C. Composing Gestures Analytically

Two existing gestures can be composed to create a new
gesture by picking them from the database and declaring their
composition analytically. In a simple case, the gestures to be
composed would be based on one and the same sensor. For
example, the result of composing the gesture of moving the

- Accelerometer ¥
6.0
1 flu
¥
o 13
Y /
1 ¢
LI
‘I‘J
=y e 3
-Accelerometer
1.0
Y
“1.0p 1.5 3
-Accelerometer Z
2.0
2.0p 1.5 3
Fig. 1. The accelerometer output when moving the mobile device to the
right.

device down with the gesture of moving the device to the
right is a composed gesture of moving the device in a letter
L fashion. However, in a general case, each of the gestures to
be composed may involve multiple, possibly different sensors.
An example is composing the movement to the right with the
proximity sensor detecting (or not detecting) a near object.

Analytical gesture composition doesn’t have to be sequen-
tial: the gestures can be superposed. In this case, the output of
each sensor involved in all gestures is considered in parallel in
time to all other sensors. For this, it is necessary the gestures
are based on different sets of sensors.

Figure 2 shows an example of a composed gesture. The
first part of the gesture is the movement to the right, the
second part is the movement to the left, but with one finger

on touchscreen. The y-axis in the first three graphs shows the
acceleration detected by the sensor, measured in m/ s2, while
in the fourth graph it shows the number of detected touches
on the touchscreen. The x-axis represents the time in seconds.

rAccelerometer ¥

6.0

[oy
v I

| P

e

L e Y
X ¢ il
LI

L

¥

6.0p 15 3 4.5

r Accelerometer ¥

1.0

A

-L.0g 15 3 4.5

r Accelerometer 2

3.0
Y ﬂ ﬁ " !5 ﬂﬁ
" i
3.0p 1.5 3 4.5
r Multitouch
1.0
¥
0.0g e - 3 4,5

Fig. 2. An example of a composed gesture.

IV. RECOGNITION OF COMPOSED MULTISENSOR GESTURES

The recognition of single-sensor gestures isn’t trivial either,
but the recognition of composed multisensor gestures is far
more complicated. It involves several aspects that are going to
be discussed in this section.

A. Filtering Out the Gravity Noise

The values produced by the accelerometer are equal to
almost 1 G even when the mobile device remains motionless
because it is affected by the gravity. The gravity noise has
to be removed out of the raw acceleration data coming from
the 3-axis accelerometer. The solution is to use a high-pass
filter, which will eliminate the gravitational force from the
output [3]. The Android platform offers an easy solution to
this problem in a form of a virtual sensor that produces data
from the accelerometer without the gravity force.

B. Identifying the Gesture Start and End

To recognize gestures, we need to determine the time of its
start and end. Here, the technique by Hwang and Lee [4] can
be employed. In a motion gesture, it is necessary to calculate
the kinetic energy of the device E; at a given moment ¢ by
the following equation:

Ei = (z:)* + (y:)® + (2:)°

where x;, y;, and z; indicate the acceleration in the correspond-
ing coordinate. We calculate an average of N last values. If
this value is greater than the certain threshold, the beginning
of the gesture if found. Similarly, we can determine the end of
the gesture by the average value of the energy falling below
the threshold.

If the gesture does not involve the accelerometer, but the
touch screen, the gesture lasts as long as at least one finger is
on the touch screen.

C. Comparing Gestures Using Dynamic Time Warping

Dynamic time warping (DTW) is an algorithm for com-
paring two temporal sequences that may vary in time or speed
used, for instance, in speech recognition [5]. This algorithm is
suitable also for gesture recognition. DTW compares the input
gesture with the stored gestures and evaluates which of the
stored gestures is the most similar to the input gesture.

Constantly recording the sensor data, gesture recognition,
and communication with the remote device (to be controlled by
gestures) consumes battery and engages significant processing
power of the mobile device. The optimal solution appears to
be to record sensor data with the mobile device, send it to the
computer, and recognize gestures there.

DTW can be sped up by adhering to some constraints.
When constraints are employed, the DTW algorithm finds the
optimal warp path through the constraint window. However,
the globally optimal warp path will not be found if it is
not entirely inside the window. But this is not a problem
when comparing gestures. In addition, by the use of the band
increased recognition accuracy, different gestures achieved a
much greater distance.

When searching for the shortest distance between two
sequences, DTW uses a two-dimensional array for storing
calculations. In our case, this can be reduced: to calculate a
row in this array, the algorithm needs only the values from the
previous row. That means that when comparing two gestures
with lengths n and m, we can reduce the space complexity
from O(n x m) to O(2 x n).

The gesture comparison is performed using the DTW
algorithm. The similarity between two points in a time span of
gestures (the output values of the sensors at a given time) is
computed as an average of the distances of the data from all
sensors that are employed. The result of the DTW algorithm is
a value that represents the similarity between the input gesture
and one stored gesture. Our application stores this result and
after comparison with all stored gestures, the gesture with the
lowest similarity value is evaluated as the most similar to the
input gesture, but only when this similarity value does not
exceed a given threshold. This threshold is useful when none
of the stored gestures is actually similar to the input one, so
in that case no similar gesture is found.

Two gestures are automatically (without employing DTW)
considered to be different when the input gesture does not
involve a sensor that the stored gesture involves or when the
difference in the gesture duration is more than two times. This
prevents useless comparisons.

The value of the similarity between the two accelerometer
output values can be expressed by the following formula:

result = (x1 — x2)2 + (y1 — y2)2 + (21 — 2‘2)2

For a more precise comparison, the similarity between the
output values of the other sensors should be in a similar range.
For the ambient light sensor, the following formula is used:

result = m
where [1 a [5 are the output values of the ambient light sensors.
For the proximity sensor, the following formula is used:
result = |p; — pa|

where, for most devices, the output values p; and p» may take
only the value of 0 or 10.

The touchscreen sensor is used for detecting how many
fingers are present on the screen. The similarity between two
output values of this sensor is a difference between the touches
multiplied by 10, in order to provide this sensor sufficient
weight when comparing gestures. The following formula is
used:

result =10 x |my3 — ma|

D. Communication Between Devices

Our experiments have been conducted in a setting of using
a mobile device to control a remote device. More specifically,
we used a smartphone to control a computer, which we assume
to be most probable setting in practice. The mobile and remote
devices must exchange information and Wi-Fi seems to be the
best for this purpose. Communication can take place using the
UDP protocol, which is faster, but does not guarantee delivery,
or TCP, which is more complex, but reliable. As a compromise,
in the approach presented here, both protocols are used: TCP
for important messages, and UDP for data.

In order to send messages to the remote device, a server ap-
plication must be running on it and listening at a specific port.
The client application on the mobile device can then find the
remote device running the server application using broadcast
messages. The computer will respond to the broadcast with a

message that includes its name and IP address. Subsequently,
the user selects one of the available servers from the client
application establishing the communication with it.

The largest amount of data that is transmitted between
devices are in the sensor data. These data are recorded 20 times
per second and stored as a byte array. They can be sent contin-
uously using the UDP protocol and gesture recognition can be
performed on the computer. Another option is to recognize the
start and end of the gesture on a mobile device and send only
the data that corresponds to the gesture using the TCP protocol.
This reduces the number of sent messages and guarantees that
they are received by the server. Furthermore, the number of
transmitted messages is reduced thanks to Nagle’s algorithm,
which is employed to combine small messages and send them
all at once [6].

V. EVALUATION

A mobile application was developed as a demonstration
and experimental setting for the approach of creation and
recognition of multisensor gestures and their composition. The
application was developed for mobile devices with the Android
operating system and uses the accelerometer, proximity sensor,
touchscreen, and ambient light sensor.

The mobile application has two modes. The first one is
gesture recording, which allows user to record gestures with
their mobile devices and store the gestures within the server
application on a computer.

The second mode is gesture recognition. When a gesture
is performed, the application will find the most similar gesture
among the stored ones and activate the behavior assigned to
that gesture, if any.

The server application allows user to modify or remove
the stored gestures. There is also an option to analytically
compose gestures (two at a time), including the newly created
ones. Each gesture can be assigned an action, such as to
show a notification or emulate pressing a key. Gestures are
visually represented in application by graphs of sensors data.
The application also contains a tab that shows the real-time
data received from the mobile device.

To evaluate the usability of the approach, four participants
were asked to perform ten already recorded gestures. First
seven gestures were motion gestures, which used only the ac-
celerometer sensor: moving in four directions, and drawing the
letters L, O, and M. The next three gestures were multisensor
gestures: holding a finger on the touch screen while moving
left and right, and drawing the letters L while the proximity
sensor detects the proximity of an object. All participants had
a moderate experience with mobile devices.

All gestures were repeated until they were successfully
recognized. The process of performing gestures was explained
to each participant. The results summarized in Table I show
that the participants were able to perform gestures with a
success rate of 85%. The numbers in the cells represents
how many attempts were needed until a successful gesture
performance has been achieved. The numbers in the last
column represent the success rate of each user individually.

After performing the predefined gestures, the participants
had an opportunity to create their own gestures. The partici-
pants had no problems in performing their own gestures.

The gesture recognition can be improved by experimenting
with different thresholds for determining the gesture start and
end. The thresholds should be increased if the user is moving
the mobile device without intention to perform a gesture,
but system detects this as a gesture. The threshold value for
similarity can also be set by users. When the most similar
gesture is found, this value is used to determine whether the
gesture that was found is evaluated as identical.

The recognition accuracy can by increased greatly by using
multiple gesture samples in gesture creation. However, this
would increase the number of gesture comparisons, but the
running time of DTW with the gesture database of ten gestures
was found to be only 16 ms.

VI. RELATED WORK

Hwang and Lee [4] addressed accelerometer based ges-
tures. They managed to treat simple spatial gestures such as
moving a mobile device in one direction. Similar results are
reported by Liu et al. [7]. Parikh [8] presents a more com-
plex treatment of accelerometer based gestures for zooming,
rotating, scrolling, and shaking.

Ruiz, Li, and Lank [1] describe the gestures for some
typical mobile device actions, such as receiving or declining
a call proposed by volunteers, but without taking into account
the technical limitations of sensors. Unlike in other approaches,
the approach proposed in this paper takes into account multiple
sensors and enables to create gestures based on the input from
these sensors in both analytic and synthetic way.

VII. CONCLUSIONS

Today’s mobile devices are easily portable and include a
number of sensors. Mobile applications make extensive use of
individual sensors. The ability to capture gestures by multiple
sensors in mobile devices opens new opportunities in the field
of device remote control and improves users comfort. The
main advantage of using gestures is that the user can focus
directly on the point of interest instead of having to follow the
screen of the mobile device.

The work reported here focuses on creating, composing,
and recognizing multisensor gestures and their use in terms
of remotely controlling other devices. The approach allows
to compose gestures synthetically, i.e., by recording complex
gestures directly as they are performed, and analytically, i.e.,
by selecting and composing existing gestures to define more
complex ones. Analytical gesture composition doesn’t have to
be sequential: the gestures can be superposed.

We explored this in a setting of using a mobile device to
control a remote device. In our case, this was a smartphone
controlling a computer, which we assume to be most prob-
able setting in practice. For this, a client-server system was
developed consisting of the application running on the An-
droid mobile device using the accelerometer, proximity sensor,
touchscreen, and ambient light sensor to capture gestures. The
server-side application that runs on a computer was developed
to store and recognize gestures.

TABLE 1.

THE RESULTS OF THE GESTURE RECOGNITION.

gesture | right [left [up [down [L [[¢] [M [right + touch [left + touch [L + far [accuracy
User A 1 1 1 1 1 1 2 1 1 1 90%
User B 1 1 1 1 1 3 1 1 2 1 76%
User C 1 1 1 1 1 1 3 1 1 1 83%
User D 1 1 1 1 1 1 2 1 1 1 90%

The preliminary evaluation results are promising exhibiting
the 85% rate in the ability of users to replicate gestures
not created by them. According to informal observations,
users seem to be quite comfortable working with their own
multisensor gestures. We expect a more thorough evaluation
to bring new findings that could be fed into the gesture
composition and recognition process.

The multisensor gestures can be used to control remote
devices, as demonstrated in our setting. The actions controlled
this way be as simple as controlling slide switching in a pre-
sentation, but gestures have a greater potential, e.g., to be used
for complex actions in computer games or in complex event
processing in general [9], [10], in sophisticated authentication,
or to simplify certain tasks for physically disabled persons.
To target different mobile platforms, multiplatform (cross-
platform) approaches to mobile application development could
be used [11].

ACKNOWLEDGMENT

The work reported here was supported by the Scientific
Grant Agency of Slovak Republic (VEGA) under the grant No.
VG 1/1221/12. This contribution/publication is also a partial
result of the Research & Development Operational Programme
for the project Research of Methods for Acquisition, Analysis
and Personalized Conveying of Information and Knowledge,
ITMS 26240220039, co-funded by the ERDF.

REFERENCES
[1]

J. Ruiz, Y. Li, and E. Lank, “User-defined motion gestures for mobile
interaction,” in Proceedings of the SIGCHI Conference on Human

(2]

(3]

[4]

(51

(6]

(71

(8]

(9]

[10]

[11]

Factors in Computing Systems. ACM, 2011, pp. 197-206.

M. Rouse. (2011) Multi-touch definition. [Online]. Available: http:
//searchconsumerization.techtarget.com/definition/multi-touch

Android Open Source Project. (2014) Android developers — reference.
[Online]. Available: http://developer.android.com/reference/

K. Hwang and J. M. Lee, “An implementation experience of
accelerometer-based gesture recognition with android smartphone,” In-
ternational Journal of Advancements in Computing Technology, vol. 5,
no. 12, 2013.

G. Al-Naymat, S. Chawla, and J. Taheri, “SparseDTW: A novel
approach to speed up dynamic time warping,” in Proceeding of Sth
Australasian Data Mining Conference, AusDM ’09. Melbourne,
Australia: ACM, 2012.

J. Nagle, “Congestion control in ip/tcp internetworks,” ACM SIGCOMM
Computer Communication Review, vol. 14, no. 4, pp. 11-17, Oct. 1984.

J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan, “uWave:
Accelerometer-based personalized gesture recognition and its applica-
tions,” Pervasive and Mobile Computing, vol. 5, no. 6, pp. 657-675,
2009.

N. Parikh, “Accelerometer based motion gestures for mobile devices,”
Master’s Project, San Jose State University, 2008, http://scholarworks.
sjsu.edu/etd projects/103/.

J. Lang and J. Janik, “Reactive distributed system modeling supported
by complex event processing,” in Proceedings of 3rd Eastern European
Regional Conference on the Engineering of Computer Based Systems,
ECBS-EERC 2013. Budapest, Hungary: IEEE Computer Society, 2013.

J. Lang, M. JantoSovi¢, and I. PoldSek, “Re-usability in complex
event pattern monitoring,” in Proceedings of 10th Jubilee International
Symposium on Aplied Machine Intelligence and Informatics, SAMI
2012. Herl’any, Slovakia: IEEE, 2012.

L. Staracek and V. Vrani¢, “MDA based multiplatform mobile appli-
cation modeling with platform compliant user interfaces,” INFOCOMP
Journal of Computer Science, vol. 13, no. 2, pp. 34-43, 2014.

