Treating Pattern Sublanguages as Patterns with an
Application to Organizational Patterns

WAHEEDULLAH SULAIMAN KHAIL and VALENTINO VRANIC, Institute of Informatics,
Information Systems and Software Engineering, Faculty of Informatics and Information
Technologies, Slovak University of Technology in Bratislava

Organizing people is very important and one of the great challenges, and in particular in software development. Organizational
patterns are the key to piecemeal growth of organizations. To deal with the complexity of choosing right pattern sequences and
understanding pattern languages in general, we propose representing them as patterns. Such summary level patterns can be
used to treat meaningful parts of pattern languages: pattern sublanguages. We applied this approach to organizational patterns.
Specifically, we expressed the pattern story of establishing a new project as the New Project pattern. We also captured the
dynamics of this pattern by a state diagram. As it can be observed by comparison, summary level patterns overcome patterns
stories in terms of comprehensibility and consistency, with the main contribution being a direct treatment of the conflicting
forces.

CCS Concepts: eSoftware and its engineering — Patterns;
Additional Key Words and Phrases: patterns, organizational patterns, pattern language, pattern sublanguage

ACM Reference Format:

Waheedullah Sulaiman Khail and Valentino Vrani¢. 2017. Treating Pattern Sublanguages as Patterns with an Application to
Organizational Patterns. EuroPLoP (July 2017), 12 pages.
DOI: https:/doi.org/10.1145/3147704.3147710

1. INTRODUCTION

Organizing people is very important and one of the great challenges, and in particular in software
development. Organizational patterns are the key to piecemeal growth of organizations. They can
be applied to correct a specific problem within an organization or to build a new organization from
scratch [Coplien and Harrison 2004]. Organizational patterns are also seen as the basis for agile soft-
ware development [Washizaki et al. 2014].

Although isolated application of one or several patterns is not uncommon in practice, building an
organization with patterns requires understanding and employing a whole pattern language, with
possibly dozens of complexly related patterns. Organizational patterns are no exception to this. At
the same time, even understanding individual organizational patterns as such is difficult [Frt'ala and
Vranic¢ 2015]. If organizational pattern languages are to be accepted and applied by a wider community,
a compressed form of expressing whole organizational pattern languages is necessary.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions @acm.org.

EuroPLoP ’17, July 12-16, 2017, Irsee, Germany

(© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-4848-5/17/07...$15.00

https://doi.org/10.1145/https://doi.org/10.1145/3147704.3147710

Proceedings of the 22nd European Conference on Pattern Languages of Programs

2 . W. Sulaiman Khail and V. Vrani¢

In this paper, we demonstrate how the pattern format can be applied once more to capture whole
pattern languages and make them more comprehensible for purposes of easier finding of appropriate
pattern sequences for the problem at hand. Moreover, we dare to claim that this is not a mere applica-
tion of the pattern format and that pattern languages can actually be perceived as patterns, as others
have observed, too [Buschmann et al. 2007]. More precisely, we propose not to target whole pattern
languages, but their meaningful parts that can be seen as sublanguages.

The rest of the paper is structured as follows. Section 2 explains the notion of a pattern sublan-
guage. Section 3 brings in a pattern for the new project organizational pattern sublanguage. Section 4
discusses the findings. Section 5 emphasizes connections of our findings to related work. Section 6
draws some conclusions and outlines further work.

2. PATTERN SUBLANGUAGES

Simply stated, a pattern language comprises a set of patterns and rules of how these patterns can be
applied in a sequence to achieve a certain goal [Coplien and Harrison 2004]. This definition comprises
the lexical level, at which a pattern language is seen as a set of patterns, similarly as a natural lan-
guage is seen as a set of words. It also comprises the syntax level or, to be more precise, the generative
syntax level: the rules of how the patterns can be applied, which corresponds to the rules of how the
words can be put into valid sentences in a natural language, i.e., a (generative) grammar. There is
also the observable syntax level: all valid sentences themselves—i.e., all pattern sequences in a pat-
tern language—also define the syntax of a pattern language. Figure 1 shows one pattern sequence for
establishing a new project organizational structure based on the organizational patterns identified by
Coplien and Harrison [Coplien and Harrison 2004].

Domain Scenarios
Expertise Define
In Role Problem

Group Gate
Validation Keeper

Size The Phasing it
Schedule In

Fig. 1. A new project pattern sequence.

As with natural languages, people operate rather at the observable syntax level learning it on the
examples of valid sentences and adopting the language grammar rules implicitly. Pattern languages
are no exception to this, so a common practice to demonstrate a proper use of a pattern language is
by pattern sequences, which represent the order in which the patterns should be applied [Porter et al.
2005].

If the number of the words in a sentence is not limited, a natural language contains an infinite
number of sentences. The same holds for pattern languages, but since these are smaller than natural

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Treating Pattern Sublanguages as Patterns with an Application to Organizational Patterns o 3

languages, it is easier to identify characteristic pattern sequences. Pattern sequences are inevitable
part of a pattern language description. However, pattern sequences do not provide all the details of the
reasoning behind choosing a particular order of patterns [Porter et al. 2005].

Pattern sequences are usually backed by pattern stories, which are based on specific examples origi-
nating in the experience of the story tellers [Buschmann et al. 2007; Henney et al. 2005]. An example
of this is Coplien and Harrison’s pattern story about piecemeal growth [Coplien and Harrison 2004,
p- 1321, which describes what organizational patterns were applied to build an appropriate organiza-
tional structure during a particular project realized in 1980s. Here is an excerpt:

When I started to plan the Q project, I wanted small core team of architects, so I employed
Size The Organization with an eye on Phasing It In. The project was too large for a Solo
Virtuoso approach—though we would use that pattern later to flesh out a prototype. I put
forward the opportunity and made it possible for people to sign up.

My main job as project coordinator was to put up the Firewalls to management until we had
our act together. We brought in Lalita for her work in scripting languages and their envi-
ronments; Peter for his architectural expertise. Later we decided we needed market domain
knowledge, and that’s when we brought on Jim and Beki in the interest of having Domain
Expertise In Roles. The recruitment strategy was always one of ferreting out matches of
interest that would excite the players, amplified by the new nature and somewhat subver-
sive approach of the opportunity. Team pride was an emergent property of this process. We
also had our own value system and model of rewards: all team members would share credit
for any patents that were issued, and we would seize a leadership role in the organization.
We also knew we were catering to the organization’s product interests, and that would be
rewarded: Compensate Success.

Beki served as the Gate Keeper, bringing in ideas from the AOL Instant Messenger world,
interviewing (child!) users of the system, and bringing in knowledge of the organization and
market opportunities. She and I split duties of Matron Role.

We moved forward on design using CRC cards to formulate an architecture, employing
Scenarios Define Problem and Group Validation. The goal was to get the project "running”
on CRC cards and then to implement a first, simple cut in a one- or two-day programming
session, all together in one room, doing Developing In Pairs.

As can be seen, the pattern story about piecemeal growth does not explicitly discuss the patterns
involved, nor does it provide the reasons for their use. Moreover, no strict order of the patterns is spec-
ified by the story. Thus, this pattern story—and perhaps many other pattern stories— cover more than
just one pattern sequence: a smaller pattern language embedded in a bigger pattern language. We
will denote such a pattern language as pattern sublanguage. This notion may be compared to jargons
in natural languages. Indeed, the pattern story about piecemeal growth is intended to provide some
insight into the piecemeal growth organizational pattern language, one of the four organizational pat-
tern languages defined by Coplien and Harrison [Coplien and Harrison 2004]. These may be considered
being a part of the overall organizational pattern language, i.e., its sublanguages. Furthermore, many
claimed-to-be pattern sequences may actually be pattern sublanguages.

A pattern language has the structure of a network [Alexander et al. 1977] formed by the links be-
tween the patterns in this language. These links determine the possible order of pattern application
and are usually backed by some reasoning. These networks are usually visualized as graphs, but they
usually embrace only the most important links. Thus, pattern sublanguages could be seen as sub-
graphs of the pattern languages they are part of if the pattern language graphs would embrace all the
links between the patterns. Otherwise, new links are usually identified based on the information pro-

Proceedings of the 22nd European Conference on Pattern Languages of Programs

4 . W. Sulaiman Khail and V. Vrani¢

vided in the patterns themselves or other accompanying descriptions. Figure 2 shows the new project
organizational pattern sublanguage, which is a part of the piecemeal growth organizational pattern
language published by Coplien and Harrison [Coplien and Harrison 2004]. The links in this diagram
are based on the organizational patterns and their relationships identified by Coplien and Harrison go-
ing beyond the links they depicted in the project management organizational pattern language graph.

Size The
Organization

Phasing
ItIn
Domain
Expertise In
Role
Scenarios
Define
problem
Compensate Wall
Success
Develop
In Pairs
Group
Validation Gate
Keeper

Fig. 2. The new project organizational pattern sublanguage.

Applying a pattern language or sublanguage requires one to understand the patterns it embraces.
This is not easy because of the number of patterns each of which is provided with a description of
several pages. For example, in the piecemeal growth pattern language [Coplien and Harrison 2004],
there are 32 patterns and some of these patterns even repeatedly occur in one pattern story and the
corresponding pattern sequence.

A nontrivial problem that requires a pattern-like solution can be seen as a conflict of forces [Alexan-
der et al. 1977; Coplien and Harrison 2004; Alexander 1979]. A pattern then resolves the conflicting
forces by specifying the conditions that should hold for the proposed solution to be viable [Schumacher
et al. 2013; Buschmann et al. 2007]. How to apply the patterns in a pattern sublanguage undoubtedly
is a nontrivial problem that might be seen as involving all the forces from all its patterns [Buschmann
et al. 2007] bringing us to the idea of treating pattern sublanguages as yet another kind of a pattern:
summary level patterns.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Treating Pattern Sublanguages as Patterns with an Application to Organizational Patterns o 5

3. THE NEW PROJECT SUMMARY LEVEL PATTERN

The excerpt from the pattern story about piecemeal growth introduced in the previous section is not
just an excerpt. Although extracted at the lexical level, i.e., by just picking out the relevant sentences
from the overall story about piecemeal growth, this is a pattern story within a pattern story that
addresses a well-defined motif of establishing a new project. In this section, we express this smaller
pattern story about establishing a new project as a summary level organizational pattern.

Following the convention of Coplien and Harrison’s organizational pattern catalog [Coplien and Har-
rison 2004], the pattern is written in the Alexandrian form, which is the original pattern form estab-
lished by Christopher Alexander in his seminal book The Timeless Way of Building [Alexander 1979].
As can be devised from Coplien and Harrison’s description [Coplien and Harrison 2004, p. 14], the
Alexandrian form looks like this:

[Pattern Name]
[Context]

[Problem Statement]
Therefore:

[Solution]

Qeadrlr

[Discussion of the Solution]

The names of the parts do not appear explicitly in pattern descriptions. The discussion of the solution
may include links to other patterns.

The pattern itself is presented in Section 3.1. Inevitably, the pattern repeats or restates the ideas of
the underlying patterns as they have been expressed by Coplien and Harrison [Coplien and Harrison
2004]. We also capture the pattern dynamics using a state machine diagram presented in Section 3.2.

3.1 The Pattern ltself
New Project

...the company has got a new project. Now the project needs to be kicked off. New professionals
capable of making a good product have to be recruited.

doedosds

The aim is to build a team and an environment which will result in a good quality prod-
uct.

Software development exhibits many complexities (logical complexity, project size, interface com-
plexity, etc.) [Blackburn et al. 2006; Hericko et al. 2008]. Many researchers recommend using a small
and a sharp team. However, in most cases, looking at the software project size and the need to sub-
mit the project on time, often is not feasible to have a small team [Blackburn et al. 2006]. It has
been proven that there must be an ideal team size based on the project size [Blackburn et al. 2006].
Software complexity requires an increased team size, but greater team size significantly decreases its
productivity.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

6 o W. Sulaiman Khail and V. Vrani¢

Bringing more staff right at the start will result in a bigger team. Having a bigger team means
breaking the project into modules and assigning sub teams to work on these modules. This requires
more communication links, which, in turn, decreases productivity. However adding people late to the
software team makes the software delivery even later [Brooks Jr. 1995]. Bringing new people late to
the project team will not help in finishing it earlier or on time; this will even engage the current staff
in training them or making them used to the environment and the project itself.

There will be empty roles. Either someone leaving the project midway or the task is demanding an
additional role. Thus staff are not interchangeable. One cannot be a professional in all fields. There
have to be a professional for each role. We cannot expect one developer to do all the tasks.

Once the team is built, its members should be kept motivated to work effectively on their tasks.
Looking after the team and giving them the feeling that they belong gives them extra energy and
motivation.

The communication between the developers and customer is crucial for a project to be successful
because design documents alone often do not fully reflect the customer needs. However, distraction
and too many noise need to be addressed professionally through a good interface.

The ultimate goal in a project is to get a quality final product. Most of the time, efforts are put in, but
the final product does not comply to expectations. Sometime, companies rely on the updates from the
market and bring new changes accordingly, but this is not always in the scope of what the customer
expects. Regular product quality assessment is needed.

All in all, there are several problems in establishing a new project, each of which is driven by a set
of conflicting forces:

—There must be an ideal team size based on the project size:
—Small and sharp teams provide better productivity
—Software size and complexity demands for an increased team size
—Fill empty roles as early as possible:
—Adding people late to the project makes project even later
—All roles must be filled with professionals
—Not just anyone should be hired
—Staff should be given the feeling that they belong:
—The budget has its constraints
—Extra motivated staff contribute more than they are scheduled
—Extra contributions inspire the whole team
—Keep good balance in the communication and interaction between stakeholders and developers:
—Requirement change is a habitual activity in software development
—Design documents are not very communicative
—Many interactions with stakeholders cause distraction to developers

Therefore:

Start with hiring the team, but do not make it big right from the start. Also, do not shrink the team
very much despite the complexity of the project. Thus, a medium size team should be created, so first
apply the Size The Organization pattern.

Once the team is built, if you still need some roles to be filled, you can apply the Phasing It In
pattern so you can gradually increase the team size ensuring that the team works well before adding
new members. However, do not hesitate too much: it is better to bring new staff earlier rather than too
late.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Treating Pattern Sublanguages as Patterns with an Application to Organizational Patterns o 7

You cannot embrace just anyone to fill the roles simply because you need more staff. Thus, when we
you apply the Phasing It In pattern, you should also apply the Domain Expertise In Roles pattern,
ensuring that newly hired staff are professionals and domain experts that correspond to the roles you
have to fill in.

The project team needs to update market and customer information and contact, but too many con-
tacts and too much information flowing directly to developers acts as distraction and noise. Thus, you
need to keep a balance, preferably by using the Gate Keeper and Firewalls patterns. By Gate Keeper
you establish an interface to bring the market updates and information flow to the team in a profes-
sional manner and to communicate with the stakeholders as well. The Firewalls pattern then limits a
distraction to the developer, which will prevent interrupts and unwanted noise. The Gate Keeper pat-
tern facilitates effective flow of information, while the Firewalls pattern restricts the flow of detracting
information and keeps the balance between stakeholder and developer interaction.

The team should be kept motivated, and not bored and exhausted. To achieve this, you apply the
Matron Role pattern. The matron will take note of all the upcoming celebrations and entertainment
opportunities arranging them accordingly, so the team has some fun along with work.

To extra motivate the team and keep them energetic and competitive, you apply the Compensate
Success pattern. Compensating outstanding performances or groups creates extra motivation in the
team, which leads to more successful projects.

To achieve good results and better quality, you may apply the Develop In Pairs pattern. A pair can
produce more than the sum of what is produced by two individuals. This also helps in keeping an
overview of the work. Developers mostly cannot see their own mistakes, but are good criticizers or bug
finders in someone else’s code.

The ultimate goal of the project is to achieve a successful final product. To ensure this, customer
requirements should be discovered. To capture all the scenarios the system will deal with, you can
apply the Scenarios Define Problem pattern. The product should be tested by an internal group and
the customer as well, so apply the Group Validation pattern. Individuals alone often miss key bugs.

goedocds

Establishing a core team is important at the start of every project. Once a core team is established
with the Size The Organization pattern, new members can be added to the team with the Phasing
It In pattern or by using the Apprenticeship pattern. New hires can be turned into experts through
internship program. The organization can apply the Day Care pattern to mentor the new staff. With
Day Care pattern one expert is helping training all the newbies and the rest of the experts are not
interrupted.

Organizations often isolate developers from too much distraction and external inputs. To avoid iso-
lation, use the Firewalls pattern with the Engage Customer and Gate Keeper patterns. The Gate
Keeper pattern used together with the Firewalls pattern keeps the balance between the stakeholder
and developer interaction, while the Engage Customer pattern complements these two patterns.

The Develop In Pairs pattern significantly helps in reviewing the code established by the Group
Validation pattern. The Develop In Pairs pattern helps you make sure that the project advances in ac-
cord with the Someone Always Makes Progress pattern. Overall, this helps in creating a very effective
working environment.

3.2 Capturing the Summary Level Pattern Dynamics

Documenting a pattern language standardizes the vocabulary of experts and helps them communicate
with each other [Hafiz et al. 2012]. The diagram in Figure 3, we are visually illustrating the solution
part of our summary level pattern. Patterns are represented by states. Transitions between the states

Proceedings of the 22nd European Conference on Pattern Languages of Programs

8 . W. Sulaiman Khail and V. Vrani¢

are determined by triggers, known also as events, and guards (in square brackets), known also as
conditions. Guards must be true in order for the trigger to cause the transition. An empty trigger
means the transition is fired immediately.

Developing the project

Work according to market updates

get constant updates from market and customer

Building the team Gate Keeper Fire Wall

no distraction

Size the Schedule x
keep distraction away[new updates

in the market or from customer]
new recruits [have empty roles] Project development

Develop in Pairs Group Validation

Phasing it in

professional for every role[new recruit]

+—Team is built—» working as a team

A Validate the design

Scenarios are captured
Scenarios Define Problem

Domain Experts in Roles O

Entry looking after team

point

Looking after team

do not exhaust the team
\ J Matron Role Compensate Success

keep team motivated

Fig. 3. New Project: a Summary level Organizational pattern

With respect to what we model, triggers represent the decisions by those who apply the pattern sub-
language. For example, after applying the Phasing It In pattern they may want to have professionals
for every role, so they fire the corresponding trigger.

Guards represent conditions beyond the control of those who apply the patterns. These may come
from the environment, such as when new recruits happen after the Size the Organization pattern has
been applied, or from the roles, such as when new updates in the market or from customer occur after
the Project Development state has been applied.

Composite states are used to combine those patterns that are applied very closely and possibly
repeatedly. Composite states help avoid transition explosion. Note that in the Developing The Project
composite state the starting point is determined by an entry point. In composite states with no entry
point, any of the inner states can be the starting point.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Treating Pattern Sublanguages as Patterns with an Application to Organizational Patterns o 9

4. DISCUSSION

While a pattern story tells a specific event or occurrence, the corresponding summary level pattern is
more general and corresponds to many different situations with a matching context. Unlike a summary
level pattern, pattern stories are not backed by strong arguments that state why a specific pattern was
used. In other words, the discussion of forces is not covered. For example, a part of the pattern story
of establishing a new project at one point states the following: “My main job as project coordinator
was to put up the Firewalls to management until we had our act together.” [Coplien and Harrison
2004]. While this sentence refers to a specific pattern (Firewalls), it does so in an informal, casual
way. In contrast, in our summary level pattern each recommended pattern is discussed, the context is
explained, the problem is stated through the discussion of forces, and the solution that will resolve the
forces is recommended.

In a summary level pattern, the problem statement is extracted from the pattern story. The need for
using each specific pattern in the pattern story is extracted as a force in the summary level pattern.
The summary level pattern forces are a compressed form of the forces of the individual patterns it
embraces and those forces which connect these patterns.

For example, the main forces in the Size The Organization pattern are [Coplien and Harrison 2004]:

—There are limits to the size of software development teams
—Adding people late to the project rarely helps

The forces in the Phasing It In pattern are [Coplien and Harrison 2004]:

—You need enough people for critical mass
—You cannot just hire anyone off the street

In New Project summary level pattern these forces are compressed.

—There must be an ideal team size based on the project size:
—Small and sharp teams provide better productivity
—Software size and complexity demands for an increased team size

—Fill empty roles as early as possible:
—Adding people late to the project makes project even later
—All roles must be filled with professionals
—Not just anyone should be hired

This includes the forces compressed from both Size The Organization and Phasing It In patterns. The
discussion of the forces explain these forces and discuss those forces which bridge the gap between the
two patterns.

Software complexity requires an increased team size, but greater team size significantly
decreases its productivity.

Bringing more staff right at the start will result in a bigger team. Having a bigger team
means breaking the project into modules and assigning sub teams to work on these modules.
This requires more communication links, which, in turn, decreases productivity.

There will be empty roles. Either someone leaving the project midway or the task is de-
manding an additional role.

The discussion of forces are backing each claim of using a specific pattern. The problem part and
the discussion of forces part in the summary level pattern debate over the arguments and the conflict
of the forces related to individual patterns. It can be said that pattern sublanguage forces compress

Proceedings of the 22nd European Conference on Pattern Languages of Programs

10 o W. Sulaiman Khail and V. Vrani¢

the forces of the individual patterns it embraces the same way this can be observed with pattern
languages [Buschmann et al. 2007].

The solution part recommends the patterns that will resolve the conflicting forces presented in the
problem part or in the part on the discussion of forces.

It is important to note that we are not inventing new patterns here. That would go against the
very nature of patterns, which are merely being observed and noted by pattern writers. The summary
level patterns already exist in pattern stories. The pattern stories that we work with are related to
organizational patterns and Coplien and Harrison have provided these at the start of each pattern
language [Coplien and Harrison 2004]. These pattern stories have their roots in practical experience
and carry the wisdom of applying the patterns in the right order resolving once more the same con-
flicting forces that accompany the patterns they are about.

5. RELATED WORK

The idea of summary level patterns proposed in this paper is related to Cockburn’s summary level use
cases [Cockburn 2000]. Summary level use cases interrelate real, user goal level use cases applying
the same format for expressing use cases. By this, they provide a big picture of the intended system
usage and they do so in a dynamic way, which is something use case diagrams do not achieve.

Buschmann et al. also find pattern languages to be similar to patterns is some aspects [Buschmann
et al. 2007]. They speak about societies of patterns: in pattern languages, some patterns appear to
aggregate other, “smaller” patterns. The “larger” patterns seems to be generated by the “smaller” pat-
terns they consist of. They observe that this decomposition can appear at several levels. This is similar
to our notion of pattern sublanguages, which we see as a “larger” pattern with respect to the “smaller”
patterns it contains, Differently than us, Buschmann et al. make no attempt to capture the relation-
ships between the “smaller” patterns within the “larger” ones.

Henney presented pattern stories in a pattern-like style of building up a problem and resolving it
in steps [Henney et al. 2005]. He presents pattern sequences for the pattern stories with only a little
description of which patterns are to be used. In our approach, the summary level pattern is fully backed
by the discussion of forces and direct treatment of the conflicting forces.

A similar approach has been taken by Siddle, who employed pattern sequences to create software
architecture [Siddle 2007]. Siddle indicated a possibility of capturing pattern sequences as patterns,
but without any further elaboration. In our approach, a pattern sequence can be easily captured by a
summary level pattern, since it can be viewed as a special case of a sublanguage.

Furthermore, Siddle used class diagrams to capture pattern sequences. Class diagrams may be suf-
ficient to capture strict orderings, but not the dynamics in pattern sublanguages.

Oberortner presented an interactive pattern story about the design process of the synthetic biology
software platform architecture using an activity diagram to capture the pattern story [Oberortner et al.
2012], which is very close to our state diagram approach. However, our state diagram is a diagrammatic
view of our summary level pattern.

Nagai et al. [Nagai et al. 2016] present their pattern language for collaborative inquiry as one pat-
tern denoted as Generator Pattern. This pattern acts as a summary description of the pattern lan-
guage. While the intention behind this approach is similar to ours, this summary level pattern presents
only the goal level concept of the whole pattern language. In contrast, our summary level pattern in-
volves all the patterns in the underlying pattern sublanguage and their inter-relationship with each
other.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Treating Pattern Sublanguages as Patterns with an Application to Organizational Patterns . 11

6. CONCLUSIONS AND FURTHER WORK

To deal with the complexity of choosing right pattern sequences and understanding pattern languages
in general, we propose representing them as patterns. Such summary level patterns can be used to
treat meaningful parts of pattern languages: pattern sublanguages. We applied this approach to orga-
nizational patterns. Specifically, we expressed the pattern story of establishing a new project [Coplien
and Harrison 2004] as the New Project pattern. We also captured the dynamics of this pattern by a
state diagram.

As it can be observed by comparison, summary level patterns overcome pattern stories in terms of
comprehensibility and consistency, with the main contribution being a direct treatment of the conflict-
ing forces.

Our next steps will be to express other organizational pattern sublanguages as summary level pat-
terns and to assess their acceptability by human subjects. In the long run, we intend to explore how
this approach can add to organizational pattern comprehensibility along with their animation using
text adventure format backed by suggestive language forms [Frt'ala and Vranié¢ 2015].

Acknowledgments

The work reported here was supported by the Scientific Grant Agency of Slovak Republic (VEGA)
under grant No. VG 1/0752/14. This contribution/publication is also a partial result of the Research
& Development Operational Programme for the project Research of Methods for Acquisition, Analysis
and Personalized Conveying of Information and Knowledge, ITMS 26240220039, co-funded by the
ERDF.

We would like to thank our shepherd, Azadeh Alebrahim, for asking tricky questions that made
us restate the notions we based our paper on in a more thorough and consistent way. Our sincere
thanks go also to the members of the workshop group, namely Michael Weiss, Uwe Van Heesch, Theo
Theunissen, Vincenzo Ferme, Elissaveta Gourova, and Thomas Epping for a thorough treatment of our

paper.

REFERENCES

Christopher Alexander. 1979. The Timeless Way of Building. Oxford University Press.

Christopher Alexander, Sara Ishikawa, Murray Silverstein, Joaquim Romaguera i Ramié, Max Jacobson, and Ingrid Fiksdahl-
King. 1977. A Pattern Language. Gustavo Gili.

Joseph Blackburn, Michael A Lapré, and Luk N Van Wassenhove. 2006. Brooks’ Law Revisited: Improving Software Productivity
by Managing Complexity. SSRN, https://ssrn.com/abstract=922768. (2006).

Frederick P Brooks Jr. 1995. The Mythical Man-Month: Essays on Software Engineering. (1995).

Frank Buschmann, Kelvin Henney, and Douglas Schimdt. 2007. Pattern-Oriented Software Architecture: On Patterns and Pat-
tern Language. Vol. 5. John Wiley & Sons.

Alistair Cockburn. 2000. Writing Effective Use Cases. Addison-Wesley.

James O. Coplien and Neil B. Harrison. 2004. Organizational Patterns of Agile Software Development. Prentice-Hall.

Tomas§ Frtala and Valentino Vranié. 2015. Animating Organizational Patterns. In Proceedings of 8th International Workshop
on Cooperative and Human Aspects of Software Engineering, CHASE 2015, ICSE 2015 Workshop. IEEE, Florence, Italy.

Munawar Hafiz, Paul Adamczyk, and Ralph E. Johnson. 2012. Growing a Pattern Language (for Security). In Proceedings of
the ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software (Onward!
2012). ACM, New York, NY, USA.

Kevlin Henney, Edwin Schlossberg, and Allan Kelly. 2005. Context Encapsulation—Three Stories, a Language, and Some
Sequences. In In Proceedings of EuroPlop 2005. Irsee Monastery, Germany.

Marjan Heri¢ko, Ale§ Zivkovié, and Ivan Rozman. 2008. An Approach to Aptimizing Software Development Team Size. Inform.
Process. Lett. 108, 3 (2008), 101-106.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

12 o W. Sulaiman Khail and V. Vrani¢

Masafumi Nagai, Taichi Isaku, Yuma Akado, and Takashi Iba. 2016. Generator Patterns: A Pattern Language for Collaborative
Inquiry. In Proceedings of 21st European Conference on Pattern Languages of Programs, EuroPLoP’16. ACM, Irsee Monastery,
Germany, 29.

Ernst Oberortner, Douglas Densmore, and J Christopher Anderson. 2012. An Interactive Pattern Story on Designing the Archi-
tecture of Clotho. In Proceedings of 19th Conference on Pattern Languages of Programs, PLoP’12. ACM.

Ronald Porter, James O. Coplien, and Tiffany Winn. 2005. Sequences as a Basis for Pattern Language Composition. Science of
Computer Programming 56, 1 (2005), 231-249.

Markus Schumacher, Eduardo Fernandez-Buglioni, Duane Hybertson, Frank Buschmann, and Peter Sommerlad. 2013. Security
Patterns: Integrating Security and Systems Engineering. Wiley.

James Siddle. 2007. Creating Software Architecture Using Pattern Sequences. In Proceedings of 12th European Conference on
Pattern Languages of Programs, EuroPLoP’07 Workshops. Irsee Monastery, Germany.

Hironori Washizaki, Masashi Kadoya, Yoshiaki Fukazawa, and Takeshi Kawamura. 2014. Network Analysis for Software Pat-
terns Including Organizational Patterns in Portland Pattern Repository. In 2014 Agile Conference, AGILE 2014. IEEE, Or-
lando, Florida, USA.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

