%wr """""""""""""""""""""""" Coomomins_
T T
S ————— A e
¥ g

___ | <ty
£ condition(J= Seouriy Sysiem
— = -
< Bifd«Buildng.shutDownl..),
Racen.shutDowni],
CperationClass turmOH),
o OperafianClass OperationCiass.condition()=]
shutDowr T
S g !
1
i
) 1
apl J] @_ pRation,
[lecanditicn| [
'_I_
1
1
1

pointcut operations(OperationClass o): R el
target(o) && call(* turnOff()) && cflow(call(* Building.shutDowny(..))); =

il adisees)
st b st

o Al e Cpermor Gl

PSR Tk it s Ergeeh B sl STRORT

Aspects Around Us

Valentino Vranié

Institute of Informatics, Information Systems,
and Software Engineering

ce.. 21U
ce.o FHT

vranic@stuba.sk

fiit.sk/~vranic

25/10/2018

Have you ever needed
to change the behavior of a program,
but without actually modifying it?

UC Place an Order
Basic Flow: Place an Order

1. Customer selects to place an order.

2. UC Search Products is being activated.

3. Customer confirms the product selection and adjusts its quantity.
4. If the product is available, System includes it in the order.

5. Customer continues in ordering further products.

6. Customer chooses the payment method, enters the payment data,
and confirms the order.

7. Customer can cancel ordering at any time.

8. The use case ends.

UC Place an Order

Basic Flow: Place an Order

<<include
1. Customer selects to place an order. fi Place an Order) === 7>(Search Products

2. UC Search Products is being activated.

3. Customer confirms the product selection and adjusts its quantity. Customer
4. If the product is available, System includes it in the order.

5. Customer continues in ordering further products.

6. Customer chooses the payment method, enters the payment data,

and confirms the order.

7. Customer can cancel ordering at any time.

8. The use case ends.

public class Ordering {
public void order() {

new ProductSearch().search(product);

UC Place an Order
Basic Flow: Place an Order

1. Customer selects to place an order.

2. UC Search Products is being activated.

3. Customer confirms the product selection and adjusts its quantity.
4. If the product is available, System includes it in the order.

5. Customer continues in ordering further products.

6. Customer chooses the payment method, enters the payment data,
and confirms the order.

7. Customer can cancel ordering at any time.

8. The use case ends.

Extension points:
» Checking Product Availability: Step 4

UC Place an Order

Basic Flow: Place an Order

1. Customer selects to place an order. Place an Order _<<include>> Search Products
2. UC Search Products is being activated.

A

3. Customer confirms the product selection and adjusts its quantity. |
4. If the product is available, System includes it in the order. Customer <<extend>>
5. Customer continues in ordering further products. :
6. Customer chooses the payment method, enters the payment data, |

and confirms the order.
7. Customer can cancel ordering at any time. Modify the Restock Plan

8. The use case ends.

Extension points:

+ Checking Product Availability: Step 4

UC Modify the Restock Plan
Alternate Flow: Modify the Restock Plan

After the Checking Product Availability extension point of the Place an
Order use case:

1. System checks the available quantity of the product being ordered.
2. If the quantity is below the limit, System adds the quantity under
demand to the restock plan.

3. The flow continues with the step that follows the triggering
extension point.

How could we preserve
the extend relationship
in code?

public class Ordering {
;ublic void order() {
new ProductSearch().search(product);
1f (productAvailable(product)) {

} else...

public class Ordering {
;ublic void order() {
rIew ProductSearch().search(product);
If (productAvailable(product)) {

}else...

public aspect RestockPlan {

void around(Product product):
call(* Ordering.productAvailable(..) && args(tovar) {

// increase the quantity in the restock plan

Peer use cases

Cancel an C@
/\ Place an Order _<<include>> Search Products

AN

|
Customer <<extf)nd>>

Modify the Restoc@

0

— — — —
— —
—

— —
T e — — —

OrderManager

Product

o

— — —
—

— —
—
—

~
g Cancel an Order J

T e o e —

OrderManager

—
— —

orderProduct)

cancelOrder()

Product

7

— =

—
— e —

OrderManager

—
—
—

— —

orderProduct)

Product

7

— — —
— —

—
T —— — —

OrderManager

—
—
—

— —

cancelOrder()

Product

NS

OrderManager

orderProduct()
cancelOrder()

Symmetric aspect-oriented modularization

(decomposition)
Aspect 2
Aspect 1 Aspect 3
Compostion rules
Whole

> Aspects as different views of a whole
> The whole is being composed out of the elements
being at the same level

Symmetric aspect-oriented modularization
(decomposition)

Aspect 2
Aspect 1 Aspect 3
flompostion rules
Whole

> Aspects as different views of a whole
>The whole is being composed out of the elements
being at the same level

Asymetric aspect-oriented modularization
(decomposition)

Aspect1
Aspect 2 =——>» Whole

Aspect 3

/ Weaving

Whole with aspects

> Aspects affect a preexisting whole

Peer use cases:
realized by a composition of
the entities being at the same level

SYMMETRIC ASPECT-ORIENTED MODULARIZATION

Use cases in the extend relationship:
realized by atfecting basic entities by
a special entity (aspect)

ASYMMETRIC ASPECT-ORIENTED MODULARIZATION

R3: Each alarm bears its ID and indication
whether 1t is connected to a special sensor.

R4: When the security system is being
shut down, all its sensors are being turned

Off.

R8: Alarms placed in buildings and
connected to special sensors are excluded
from being turned.off duringtheshut
down of the whole security system.

overall project Q

A Summary “white”
! Goals

advertise order mvoice
/\ \ 'l /J
\
.
A| Setup || reference iv monitor create |f send || User ‘blue”
promotion || promotion mvoice Goals

identify register || 1dentify identify Subfunctions
promotion product custome

A. Cockburn. Writing Effective Use Cases. Addison-Wesley, 2000.

—

{ shut down the system:)

—
—

Building Alarm -id: Integer

+shutDown(): void +shutDown(): void +turnOff(): void -1sOn: Boolean
-specialSensor: Boolean
+turnOn(): void

+turnOff(): void
+hasSpecialSensor(): Sensor

— — e -
— —
—

—
— - — —

'C_:Ehl.lt down the By'B‘le‘ 2

i

Buiding Room

+shutDown(): void +ahutDowm(): void

-id: Integer

-lz0n: Boalaan
-specialSensor. Boolean
+umCnd}: void
HurniO4ff): void

+hagSpecialSensor]): Sanaor

<<theme>> <<theme>>
shut down the system alarms
Building Room Alarm Alarm
+shutDown(): void Q ~_ | +shutDown(): void "\%‘ | +turnOff(): void -id: Integer

sd Shut down the syslerry

: Building

: Room

shutDown() > I

loop)

shutDown()

-isOn: Boolean
-specialSensor: Boolean

+turnOn(): void
+turnOff(): void
+hasSpecialSensor(): Sensor

7

/

ThemeName("SecuritySystem")
-7 match[name)]

-
4""

Theme/UML

<<theme>>
exclude alarms connected to special sensors

"

loop

shutDown()

turnOff

/
ThemeMName("SecuritySystem")
=7 match[name]

—

-

Theme/UML

OperationClass

+operation(): void
+condition(): Boolean

sd Exclude alarms connected to special sensory

: MainObject

: Part

_shutDown(y,

—_:ﬂmown(}

0 : OperationClass
I

loop J

[shufDown(]

I

|

|

1
—

I

|

|

|

oo
operation() !_'

opt

—do_operation()
[lo.condition()}/ @

[

<<theme>> |

Security System

<~ pind[<Building.shutDown(..),
Room.shutDown(),
OperationClass.turnOff(),
OperationClass.condition()>]

< Bind[<Building.shutDown(_.),
Room.shutDown(),

sd Exclude alarms connected to special sensnrs)
OperationClass. turnOff(),

| : MainObject | | : Part | | o : OperationClass OperationClass.condition()=]
shuanwn{i — T T
[—do-shytDown() | |
o ! |
shutDown T
oo dostgDown) |
operation() o .

opt —do—opgration()
[lo.condition{)} [m

[

I

1

<<theme>>
exclude alarms connected to specialsensors - - - - - - - - - - - - - — - —— — — |

OperationClass

+operation(): void
+condition(): Boolean -

e

<~ pind[<Building.shutl
Room.shutDow
OperationClass.tur

: MainObject o : OperationClass OperationClass.con

shutDown[i _
iicthtDown()
<

sd Exclude alarms connected to special sensory

/ / operation()

opt] —do—operation()
[lo.condition())/ [m

<<theme>>

exclude alarms connected to special sensors |- - ——— - — - — — = — = — — — — — — — — — — —— ——— —— —— -~ —— —— — —

(Wit ittt — = e T === — = ="

OperationClass

+operation(): void
+condition(): Boolean

sd Exclude alarms connected to special sensory

: MainObject o : OperationClass

—shutDown(y,
—_‘dEtDown()

/ / operation() >

opt —do—opgration()
['o.condition() m

—

<<theme>>

|
Security System

-7
P
-
-

<~ pind[<Building.shutDown..),
Room.shutDown(),

OperationClass.turnOff(),
OperationClass.condition()>]

pointcut operations(OperationClass 0):
target(o) && call(* turnOft()) && cflow(call(* Building.shutDown(..)));

public abstract aspect ConditionallySkeepOperations {
interface OperationClass {
boolean condition();
abstract pointcut operations(OperationClass o0);
void around(OperationClass o): operations(o) {

1f (lo.condition())
proceed(0);

public abstract aspect ConditionallySkeepOperations {

interface OperationClass {
boolean condition();

}

abstract pointcut operations(OperationClass o);
void around(OperationClass 0): operations(o) {
if ('o.condition())

proceed(o);

}

public aspect ExcludeAlarmsConnectedToSpecialSensors extends
ConditionallySkeepOperations {

declare parents: Alarm implements OperationClass;
public boolean Alarm.condition() {

return hasSpecialSensor();

pointcut operations(OperationClass 0): target(o) && call(* turnOff(..));

Aspect-oriented features are
available in popular
programming languages

Traits (Scala)

Open classes (Ruby)
Prototypes (JavaScript)
Decorators (Python)

> Aspect-oriented programming enables to
affect existing code without having to
actually change it

> Aspect-oriented modularization is natural
already at the level of use cases

> UML could embrace aspect-oriented
modeling

tinyurl.com/aspects-sing

