
Symmetric Aspect-Orientation: Some Practical Consequences

Symmetric Aspect-Orientation: Some Practical
Consequences

Jaroslav Bálik Valentino Vranić

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies

Slovak University of Technology in Bratislava

vranic@fiit.stuba.sk

NEMARA 2012 – AOSD 2012 – March 26, 2012, Potsdam,
Germany

1 / 18

vranic@fiit.stuba.sk


Symmetric Aspect-Orientation: Some Practical Consequences

Introduction

Symmetric aspect-oriented approaches promote
aspect-oriented decomposition starting at the earliest phases of
software development
But academic symmetric aspect-oriented approaches seem to
be too complicated for an average developer
Can that be simplified to become widely accepted yet pertain
essential features?
What out of that do we already have in industry?

2 / 18



Symmetric Aspect-Orientation: Some Practical Consequences

Overview

1 Symmetry of Aspect-Oriented Approaches

2 Peer Use Cases

3 Feature Modeling

4 Aspect-Oriented Implementation in Established Programming
Languages

5 Summary: Modularity Challenges and Innovations

3 / 18



Symmetric Aspect-Orientation: Some Practical Consequences
Symmetry of Aspect-Oriented Approaches

Asymmetric and Symmetric AOP

Asymmetric AOP: aspects (on one side) as something that
affects the base code (on the other side)

Aspects are said to be woven into the base code
AspectJ and like—PARC1 AOP
Mainstream approach in AOP

Symmetric AOP: aspects as partial views of classes
Functional classes are constructed by the compositions of
selected views, i.e. aspects
Hyper/J—IBM Watson Research Center
No industry-strength languages

1Palo Alto Research Center
4 / 18



Symmetric Aspect-Orientation: Some Practical Consequences
Symmetry of Aspect-Oriented Approaches

A More Comprehensive View of Symmetry

Here, symmetry is perceived mostly as element symmetry
A more comprehensive view of symmetry includes join point
symmetry and relationship symmetry2

2W. Harrison, H. Ossher, P. Tarr. Asymmetrically vs. symmetrically organized paradigms for software
composition. Research Report RC22685, IBM Watson Research Center, 2002.

5 / 18



Symmetric Aspect-Orientation: Some Practical Consequences
Peer Use Cases

Peer Use Cases—Inherently Symmetrical

Enroll into Study Year

Student

End Study

Enroll into Study Year

EnrollmentManager

enrollStudent()

manager

Student

enroll()
setYear()

student

End Study

manager student

Student

endStudy()

EndStudyManager

endEnrollment()

: EnrollmentManager : StudentClient
enrollStudent()

enroll()

setYear()

: StudentClient : EndStudyManager
endEnrollment()

endStudy()

6 / 18



Symmetric Aspect-Orientation: Some Practical Consequences
Feature Modeling

Feature Modeling

Features are close to requirements
Features are often given to developers as separate tasks
If proper commit messages are used, the features can be
tracked in version system
Only temporary feature branches available

7 / 18



Symmetric Aspect-Orientation: Some Practical Consequences
Aspect-Oriented Implementation in Established Programming Languages

Rediscovering Symmetric AOP

Developers apply symmetric aspect-oriented decomposition
without actually being aware of it
They are often forced to abandon this initial decomposition
But some programming languages used in industry are close to
symmetric aspect-orientation

8 / 18



Symmetric Aspect-Orientation: Some Practical Consequences
Aspect-Oriented Implementation in Established Programming Languages

Traits (1)

A trait is a unit that groups (related) methods unable to stand
as full-fledged class
Multiple traits can be composed with a single class
An example in Scala:

class Student() { }

trait BasicStudent extends Student{
var _name = ""
var _surname = ""
def setName(str:String) = { _name = str }
def setSurname(str:String) = { _surname = str }
def getName = _name
def getSurname =_surname

}

9 / 18



Symmetric Aspect-Orientation: Some Practical Consequences
Aspect-Oriented Implementation in Established Programming Languages

Traits (2)

trait PartTimeStudent extends Student {
var tuitionFee = 0
def payTuitionFee(amount:Int) =

{ tuitionFee = amount + tuitionFee }
def tuitionFee = tuitionFee

}

object App {
def main(args : Array[String]) {

var student = new Student() with PartTimeStudent
with BasicStudent

...
}

}

10 / 18



Symmetric Aspect-Orientation: Some Practical Consequences
Aspect-Oriented Implementation in Established Programming Languages

Open Classes

Ruby’s open classes enable to define parts of the same class at
multiple places
The concerns can be stored in different files
The composition is made by importing the source files
An example in Ruby:

Student.rb:
class Student

def initialize(name, surname)
@name = name
@surname = surname

end
def name; @name; end
def surname; @surname; end

end

11 / 18



Symmetric Aspect-Orientation: Some Practical Consequences
Aspect-Oriented Implementation in Established Programming Languages

Open Classes (2)

PartTimeStudent.rb:
class Student

def payTuitionFee(val)
if @tuitionFee == nil

@tuitionFee = val
else

@tuitionFee = @tuitionFee + val
end

end
def tuitionFee @tuitionFee end

end

The composition—App.rb:
require "./Student.rb"
require "./PartTimeStudent.rb"
...

12 / 18



Symmetric Aspect-Orientation: Some Practical Consequences
Aspect-Oriented Implementation in Established Programming Languages

Prototype-Based Programming (1)

Prototype-based programming is an object-oriented
programming without classes
Prototype objects can be cloned and dynamically extended
with new methods
The methods can be added in „batches“ with each one
representing another concern
An example in JavaScript:

var student = {
"_name": "",
"_surname":"",
setName":function(name) { this._name = name },
"getName":function() { return this._name },
"setSurname":function(surname) { this._surname = surname },
"getSurname":function() { return this._surname }

};

13 / 18



Symmetric Aspect-Orientation: Some Practical Consequences
Aspect-Oriented Implementation in Established Programming Languages

Prototype-Based Programming (2)

The partTimeStudent object is a clone of student:

var Factory = function(){};
Factory.prototype = student;
var partTimeStudent = new Factory();

Methods and attributes necessary for the role of a part-time
student are added to it:

partTimeStudent[’_tuitionFee’] = 0;
partTimeStudent[’payTuitionFee’] =

function(val) { this._tuitionFee = this._tuitionFee + val };
partTimeStudent[’getTuitionFee’] =

function() { return this._tuitionFee };

14 / 18



Symmetric Aspect-Orientation: Some Practical Consequences
Aspect-Oriented Implementation in Established Programming Languages

Emulation in Asymmetric Approaches (1)

Symmetric aspect-oriented programming can be emulated to
some extent in asymmetric approaches
Keep the base as thin as possible and build everything with
aspects
Inter-type declarations establish the structure, including initial
method bodies
The behavior is then implemented by advices

15 / 18



Symmetric Aspect-Orientation: Some Practical Consequences
Aspect-Oriented Implementation in Established Programming Languages

Emulation in Asymmetric Approaches (2)

An example in AspectJ

public class Student { }

public aspect BasicStudent {
private String Student.name = null;
private String Student.surname = null;
public Student.new(String name, String surname) {...}
public String Student.getName() {...}
public String Student.getSurname() {...}

}

public aspect PartTimeStudent {
private double Student.tuitionFee = 0;
public void Student.payTuitionFee(double tuitionFee) {...}
public double Student.getTuitionFee() {...}

}

16 / 18



Symmetric Aspect-Orientation: Some Practical Consequences
Summary: Modularity Challenges and Innovations

The Key Modularity Challenges That Remain
Unaddressed

The design gap: no design notation used in industry enables
aspect-oriented modeling
Identify further features in industry-strength languages close to
symmetric AOP

17 / 18



Symmetric Aspect-Orientation: Some Practical Consequences
Summary: Modularity Challenges and Innovations

What Key Innovations May Help Address the Modularity
Challenges?

Constructs of existing industry-strength programming
languages in which aspect-oriented programming is possible
should be improved to provide better symmetric aspect
orientation
To spread the knowledge about symmetric aspect-oriented
development to the industry
Comprehensive studies and real applications of symmetric
aspect-oriented development are needed

18 / 18


	Symmetry of Aspect-Oriented Approaches
	Peer Use Cases
	Feature Modeling
	Aspect-Oriented Implementation in Established Programming Languages
	Summary: Modularity Challenges and Innovations

