
Symmetric Aspect-Orientation: Some Practical Consequences

Jaroslav Bálik Valentino Vranić
Institute of Informatics and Software Engineering

Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava

Ilkovičova 3, 84216 Bratislava 4, Slovakia
jaroslav.balik1@gmail.com, vranic@fiit.stuba.sk

Abstract
To some extent, contemporary software development has
incorporated the AspectJ style of aspect-oriented program-
ming. This style is denoted as asymmetric since it explic-
itly distinguishes between aspects and the base. Although
academic symmetric aspect-oriented approaches, in which
there is no such distinction, gained no direct acceptance in
industry, several approaches used in practice exhibit sym-
metric aspect-oriented features. As shown in this paper, this
ranges from peer use cases and features as analysis and de-
sign concepts to particular programming language mecha-
nisms such as traits (Scala), open classes (Ruby), or proto-
types (JavaScript). Even inter-type declarations and advices
as known from AspectJ can be used to emulate symmetric
aspect-oriented programming. The examples given in this
paper indicate the basic possibilities for this. However, de-
tailed studies of the corresponding academic and industry
approaches should be carried.

Categories and Subject Descriptors D.2.10 [Software En-
gineering]: Design

General Terms Design, Languages

1. Introduction
High hopes have been put into aspect-orientation as a way
towards improving software modularity. As industry adop-
tion doesn’t quite look like a fulfillment of these hopes,
academia responds by reinitiating the search for approaches
to software development that will provide a better modular-
ity. This is legitimate, but it might be that a key to the so-
lution of this problem lies in analyzing what out of existing
aspect-oriented approaches seems to be acceptable or even

appealing to industry and why. In this, the approaches to
software development that are only a step from being aspect-
oriented should be of a special interest.

In so-called asymmetric aspect-oriented approaches there
is a distinction between the base and aspects that affect this
base. In contrast to this, in symmetric aspect-oriented ap-
proaches, applications are composed out of partial views—
or aspects—without explicitly denoting any of them as a
base. While asymmetric approaches found their way to in-
dustry, symmetric approaches seem to remain the realm
of academic research. Surprisingly, several contemporary
approaches to software development commonly not classi-
fied as aspect-oriented exhibit some features of symmetric
aspect-oriented approaches.

This paper attempts to point to some of prominent sym-
metric aspect-oriented features applied in practice or those
that could be easily applied as a straightforward and seam-
less extrapolation of the industry state of the art. Sec-
tion 2 clarifies the issue of symmetry in aspect-oriented
approaches. Section 3 explains how use cases actually rep-
resent symmetric aspect-oriented decomposition. Section 4
reflects on feature modeling and version control. Section 5
describes some features in programming languages used in
industry close to symmetric aspect-oriented programming.

2. Symmetry of Aspect-Oriented Approaches
Symmetry is an important property of aspect-oriented ap-
proaches. Simply stated, asymmetric aspect-oriented ap-
proaches distinguish between so-called basic elements and
aspects that affect them or other aspects. This is charac-
teristic for PARC AOP [12] and AspectJ as its language
representative. AspectJ and number of other languages and
frameworks influenced by it are used in industry.

Symmetric aspect-oriented approaches treat all elements
equally with elements representing partial views of classes.
The elements are composed according to composition rules,
which are usually introduced separately. Hyper/J is a sym-
metric aspect-oriented language [14]. It ended at a prototype
level and as such has never been used in industry applica-
tions. CaesarJ strived to support symmetric aspect-oriented

NEMARA’12, March 27, 2012, Potsdam, Germany 1



programming, but it has had no industrial application either;
a recent overview of industrial AOSD projects reports only
one controlled experiment [15].

Beside element symmetry, a complex view of symme-
try includes relationship and join point symmetry [9].1 If
an element itself defines with what other elements it is
composed—as an aspect in AspectJ does by its pointcuts—
such an approach exhibits a relationship asymmetry. Re-
lationship symmetry is achieved if the relationships can be
placed in any of the element they involve, or outside of them.
Join point symmetry as conceived by Harrison et al. [9] is de-
fined only in the sense of static aspect-oriented composition
(that can be performed on lexical basis), so it is of limited
applicability to contemporary aspect-oriented approaches.

In the PARC AOP approach, the main decomposition is
object-oriented. Crosscutting concerns are encapsulated in
elements called aspects. The structure of aspects is different
than the structure of the base decomposition elements, which
constitutes an element asymmetry. Aspects can affect the
base decomposition, but the opposite direction of influence
is impossible, so there is also a relationship asymmetry, too.

Subject-oriented programming in Hyper/J implements
concerns by the means of partial, subjective classes orga-
nized into so-called hyperslices and hypermodules. Subjec-
tive classes have the same structure for all concerns, there-
fore subject-oriented programming is symmetric from the el-
ement perspective. Every concern can affect other concerns,
so from the relationship perspective, it is also symmetric.

While PARC AOP appears to be fully asymmetric, and
subject-oriented programming fully symmetric, other ap-
proaches may exhibit mixed symmetry [9]. For example,
composition filters [1, 7] are asymmetric with respect to
elements: the main concern is implemented in classes and
crosscutting concerns are implemented in input and output
filters. With respect to relationships, composition filters are
symmetric: the relationships are placed outside of the ele-
ments and can relate filters to each other, too (though only to
define the order of their application).

3. Peer Use Cases
A use case describes a coherent functionality that provides
some result of value to a user. As the term says, it is a case of
a system use [2]. As such, use cases can be seen as modules
of specification. This kind of modules is well accepted by
both developers and users, but with common modularization
techniques gets lost in design and, consequently, code itself.

Extension use cases—use cases that extend by one or
more of their flows other use cases—are clearly an asym-
metric aspect-oriented mechanism, as pointed out by Jacob-
son and Ng [11]. Extensions can be directly implemented by
advices which keeps extension use cases modular in code.

Other use cases with no extend or include relationships
between them—so-called peer use cases—can be preserved

1 Some points on symmetry presented here are a part of our earlier work [3].

in code, too, again by using aspect-orientated program-
ming [11]. Each use case contributes with what is neces-
sary for achieving its functionality in its own module. These
modules are then composed to get a whole application. This
is a case for symmetric aspect-oriented programming.

Consider an example in Fig. 1. The Enroll into Study Year
and End Study are peer use cases. A closer inspection of
their behavior expressed by sequence diagrams displayed in
Fig. 2 reveals the structural elements behind them.

Enroll into Study Year

Student

End Study

Figure 1. Peer use cases.

: EnrollmentManager : StudentClient
enrollStudent()

enroll()

setYear()

: StudentClient : EndStudyManager
endEnrollment()

endStudy()

Figure 2. Sequence diagrams of peer use cases.

Under the influence of object-oriented programming, we
tend to view these elements as objects. The behavior they
are involved in can be expressed by collaborations with the
corresponding classes associated to them as shown in Fig. 3.
These collaborations are actually use case realizations.

Enroll into Study Year

EnrollmentManager

enrollStudent()

manager

Student

enroll()
setYear()

student

End Study

manager student

Student

endStudy()

EndStudyManager

endEnrollment()

Figure 3. Collaborations with partial classes.

It is immediately clear that each collaboration has its own
version of the Student class. Although less obvious, but with
appropriately generalized association role names a little bit
clearer, the manager classes appear to be actually one and
only Manager class. However, with aspects we may keep
these views—or aspects—separate of each other, with the
pieces of each view kept together.

This is something developers actually do in use case
driven software development, a common approach today.
However, they weave models manually ending up with wo-
ven models and woven code based on these models. Given

NEMARA’12, March 27, 2012, Potsdam, Germany 2



the right tools, developers could easily accept the idea of
maintaining separate views of models and code.

Another point is worth mentioning here. Theme [4] is
a comprehensive approach to aspect-oriented analysis and
design that supports both asymmetric and symmetric mod-
eling keeping concerns—called themes there—modularized
all the way from specification to implementation. There are
no reported industry applications of the Theme approach as
such, but it has been demonstrated that Theme/Doc is very
close to use case modeling [20]. This is as if one of the best
known academic approaches to aspect-oriented analysis and
design has been already widely used in practice.

4. Feature Modeling
Although academic feature modeling notations are not used
in practice [10], feature decomposition is commonly used
in contemporary software development. Features are often
easily identified at the time of requirement specification and
they can serve as a backbone during entire software evolu-
tion, which is typical in software product lines.

Features are often given as separate tasks to programmers
and—if proper commit messages are used—they can be
tracked in version control systems. With enhanced support
for merging and branching already available in distributed
version control systems like Mercurial or Git, it becomes
easier to maintain features in different feature branches [8].

Branch merging corresponds to symmetric aspect-oriented
composition. The elements of the main branch are of the
same category as the elements of feature branches, which
constitutes an element symmetry. Each branch can affect the
elements of any other branch if they are declaratively com-
plete, i.e. they declare everything to which they refer to [19],
which constitutes a relationship symmetry.

A feature branch is forked from the main branch when de-
veloping a new feature. After completing the feature imple-
mentation, its branch is merged back with the main branch.
The problem is that feature branches are temporary, so the
next step in making distributed version systems more aspect-
oriented is to make branches persistent.

5. Aspect-Oriented Implementation in
Established Programming Languages

While designed-to-be symmetric aspect-oriented program-
ming languages can’t be said to have had success in industry,
some features in languages used in industry are getting very
close to the idea of symmetric aspect-oriented programming.

5.1 Traits
The traditional inheritance model is criticized for mixing
the stable data interface with unstable behavioral interface,
which leads to a poor class design, such as deep inheri-
tance hierarchies, unnecessary methods in parent classes,
and bad encapsulation [17]. This problem can be overcome
with traits. A trait is a a group of pure methods that serves

as a building block for classes and is a primitive unit of code
reuse [18]. Scala provides a trait construct under this very
name, but the idea of traits can be traced even back to C++’s
templates whose member functions are composed with those
of a concrete class at compile time, so that the object exhibits
both the class and template behavior at run time [17].

Assume we have to implement a student from different
perspectives for the purposes of a university information
system to be developed in Scala. The basic class is empty:

class Student() { }

The basic student data are introduced by a trait:

trait BasicStudent extends Student{
var name = ””
var surname = ””
def setName(str:String) = { name = str }
def setSurname(str:String) = { surname = str }
def getName = name
def getSurname = surname

}

Some students study only part-time. Assume such stu-
dents are due to pay a tuition fee. This can be implemented
by another trait:

trait PartTimeStudent extends Student {
var tuitionFee = 0
def payTuitionFee(amount:Int) =

{ tuitionFee = amount + tuitionFee }
def tuitionFee = tuitionFee

}

The class and trait are composed using the with clause to
get an extended behavior for John Doe, who is a part-time
student:

object App {
def main(args : Array[String]) {

var student = new Student() with PartTimeStudent
with BasicStudent

...
}

}

5.2 Open Classes
There are several programming languages derived from
Smalltalk that support so-called open classes. A popular rep-
resentative of this group is Ruby. With Ruby’s open classes,
it is possible to add and modify the members of the same
class at multiple places of source code.

This feature can be used to implement subjective classes.
Such subjective classes can be conveniently stored in sepa-
rate files. The composition would then be determined by the
order in which they are included in the application.

An example from the previous section is here imple-
mented in Ruby. The basic student data are expressed by a
class provided in the Student.rb file:

NEMARA’12, March 27, 2012, Potsdam, Germany 3



class Student
def initialize(name, surname)

@name = name
@surname = surname

end
def name; @name; end
def surname; @surname; end

end

The additional functionality needed for part-time students
is expressed by another Student class provided in a separate
file named PartTimeStudent.rb:

class Student
def payTuitionFee(val)

if @tuitionFee == nil
@tuitionFee = val

else
@tuitionFee = @tuitionFee + val

end
end
def tuitionFee @tuitionFee end

end

The composition of partial classes is then realized by
importing the corresponding files with the require clause:

require ”./Student.rb”
require ”./PartTimeStudent.rb”
...

5.3 Prototype-Based Programming
Prototype-based programming is a kind of object-oriented
programming that relies on objects with a complete absence
of classes. Instead of class inheritance, the prototype object
cloning is used.

A widely used prototype-based language is JavaScript, a
member of the ECMAScript family. The implementation of
subjective views is quite similar to the one with open classes,
but changes are realized on a single object.

In our part-time student example, the basic student proto-
type could be represented by the student object:

var student = {
” name”: ””,
” surname”:””,
setName”:function(name) { this. name = name },
”getName”:function() { return this. name },
”setSurname”:function(surname) { this. surname = surname },
”getSurname”:function() { return this. surname }

};

The partTimeStudent object is a clone of student:

var Factory = function(){};
Factory.prototype = student;
var partTimeStudent = new Factory();

Subsequently, methods and attributes necessary for the
role of a part-time student are added to it:

partTimeStudent[’ tuitionFee’] = 0;

partTimeStudent[’payTuitionFee’] =
function(val) { this. tuitionFee = this. tuitionFee + val };

partTimeStudent[’getTuitionFee’] =
function() { return this. tuitionFee };

The example presented here is implemented in pure
JavaScript. The JavaScript framework called Prototype2 gets
even closer to subject-oriented programming with its extend
clause that enables to merge subjects by copying the source
object members to the target object.

5.4 Emulation in Asymmetric Approaches
Symmetric aspect-oriented programming can be emulated to
some extent in asymmetric approaches. The key is to keep
the base as thin as possible and to build everything with
aspects. Inter-type declarations can be used to establish the
structure, including initial method bodies. The behavior is
then implemented by advices.

6. Related Work
There has been a continuous effort to convince industry
of usefulness of aspect-oriented programming [22]. This
paper focuses on identifying unrecognized mainstream uses
of symmetric aspect-oriented approach.

Partial class models result from peer use cases. WEAVR [5,
6] is a practical approach to partial UML model weaving, but
it’s asymmetric. It’s based on graphical pointcut specifica-
tion recalling Join Point Designation Diagrams.3

The Theme approach embraces the way to implement
themes using AspectJ, AspectWerkz, and Concern Manip-
ulation Environment,4 so they persist in code. This is very
similar to preserving use cases as proposed by Jacobson and
Ng and to symmetric aspect-oriented programming emula-
tion presented in Sect. 5.4.

If they are not corrective, changes can be viewed and
modeled as additional application features [21]. Often they
affect multiple places in the application. Sometimes they
need to be taken out and even reapplied to another devel-
opment line of the same application. Even more important,
for their further maintenance, it is desirable to have changes
modular. If the application feature model is missing, partial
feature models can be used [13]. In change implementation,
asymmetric aspect-orientated programming is used.

The Data–Context–Interaction (DCI) [16, 17] paradigm’s
role based design is very close to symmetric aspect-oriented
approach. DCI relies on traits for implementing roles that
can be used to emulate symmetric aspect-oriented program-
ming (see Sect. 5.1).

2 http://www.prototypejs.org/
3 http://www.dawis.wiwi.uni-due.de/en/research/foci/aosd/

jpdds/
4 Concern Manipulation Environment (http://www.research.ibm.
com/cme/) was an IBM project that included Hyper/J features. Unfortu-
nately, it isn’t publicly available.

NEMARA’12, March 27, 2012, Potsdam, Germany 4



7. Conclusion and Further Work
Although academic symmetric aspect-oriented approaches,
in which there is no distinction between aspects and the base,
gained no direct acceptance in industry, several approaches
used in practice exhibit symmetric aspect-oriented features.
As shown in this paper, this ranges from peer use cases
and features as analysis and design concepts to particular
programming language mechanisms such as traits (Scala),
open classes (Ruby), or prototypes (JavaScript). Even inter-
type declarations and advices as known from AspectJ can be
used to emulate symmetric aspect-oriented programming.

The examples given in this paper just indicate the basic
possibilities for this. The awareness of what can be done
with symmetric aspect-oriented approaches in industry to-
day directly or with only a small effort to adopt them should
be raised and promoted by in-depth analysis and comparison
of the corresponding academic and industry approaches.

Acknowledgments
This publication is the partial result of the Research & De-
velopment Operational Programme for the project Research
of methods for acquisition, analysis and personalized con-
veying of information and knowledge, ITMS 26240220039,
co-funded by the ERDF. The work was partially supported
by the Scientific Grant Agency of Slovak Republic (VEGA),
grants No. VG 1/1221/12 and VG 1/0675/11.

References
[1] M. Aksit and B. Tekinerdogan. Solving the modeling prob-

lems of object-oriented languages by composing multiple
aspects using composition filters. In Proc. of the Aspect-
Oriented Programming Workshop at ECOOP’98, Brussels,
Belgium, 1998.

[2] J. Arlow and I. Neustadt. UML 2 and the Unified Process.
Addison-Wesley, 2005.

[3] J. Bálik and V. Vranić. Sustaining composability of aspect-
oriented design patterns in their symmetric implementation.
In 2nd International Workshop on Empirical Evaluation of
Software Composition Techniques, ESCOT 2011, at ECOOP
2011, Lancaster, UK, July 2011.

[4] S. Clarke and E. Baniassad. Aspect-Oriented Analysis and
Design: The Theme Approach. Addison-Wesley, 2005.

[5] T. Cottenier, A. van den Berg, and T. Elrad. The
motorola WEAVR: Model weaving in a large industrial
context. In Proc. of 6th International Conference on
Aspect-Oriented Software Development, Vancouver, British
Columbia, Canada, Mar. 2007. ACM.

[6] T. Cottenier, A. van den Berg, and T. Elrad. Motorola
WEAVR: Aspect orientation and model-driven engineering.
Journal of Object Technology, 6(7):51–88, Aug. 2007. http:
//www.jot.fm/issues/issue_2007_08/article3.

[7] A. R. de, M. Hendriks, W. Havinga, P. Durr, and L. Bergmans.
Compose*: a language- and platform-independent aspect
compiler for composition filters. In Proc of 1st Interna-

tional Workshop on Advanced Software Development Tools
and Techniques, WASDeTT 2008, Paphos, Cyprus, July 2008.

[8] V. Driessen. A successful Git branching
model, Jan. 2010. http://nvie.com/posts/

a-successful-git-branching-model/.

[9] W. H. Harrison, H. L. Ossher, and P. L. Tarr. Asymmetrically
vs. symmetrically organized paradigms for software composi-
tion. Technical Report RC22685, IBM Research, Dec. 2002.

[10] A. Hubaux, A. Classen, M. Mendonça, and P. Heymans. A
preliminary review on the application of feature diagrams in
practice. In Proc. of International Workshop on Variability
Modelling of Software-intensive Systems, VaMoS 2010, Linz,
Austria, Jan. 2010.

[11] I. Jacobson and P.-W. Ng. Aspect-Oriented Software Devel-
opment with Use Cases. Addison-Wesley, 2004.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In Proc. of 11th European Conference on Object-
Oriented Programming, ECOOP’97, LNCS 1241, Jyväskylä,
Finland, June 1997. Springer.

[13] R. Menkyna and V. Vranić. Aspect-oriented change realiza-
tion based on multi-paradigm design with feature modeling.
In Proc. of 4th IFIP TC2 Central and East European Con-
ference on Software Engineering Techniques, CEE-SET 2009,
LNCS 7054, Krakow, Poland, Oct. 2009. Springer.

[14] H. Ossher and P. Tarr. Multi-dimensional separation of con-
cerns and the hyperspace approach. In Software Architectures
and Component Technology. Kluwer, 2002.

[15] A. Rashid, T. Cottenier, P. Greenwood, R. Chitchyan, R. Me-
unier, R. Coelho, M. Südholt, and W. Joosen. Aspect-oriented
software development in practice: Tales from AOSD-Europe.
Computer, 43(2):19–26, Feb. 2010.

[16] T. M. H. Reenskaug. The common sense of object
oriented programming. http://folk.uio.no/trygver/

2008/commonsense.pdf, 2008.

[17] T. M. H. Reenskaug and J. O. Coplien. The DCI architecture:
A new vision of object-oriented programming. http://www.
artima.com/articles/dci_vision.html, Mar. 2009.

[18] N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits:
Composable units of behaviour. In Proc. of 17th European
Conference on Object-Oriented Programming, ECOOP 2003,
LNCS 2743, Darmstadt, Germany, July 2003. Springer.

[19] P. Tarr and H. Ossher. Hyper/J User and Instalation manual.
IBM Research, 2000.

[20] V. Vranić and P. Michalco. Are themes and use cases the
same? Information Sciences and Technologies, Bulletin of the
ACM Slovakia, 2(1):66–71, 2009. Special Section on Early
Aspects at AOSD 2010.

[21] V. Vranić, R. Menkyna, M. Bebjak, and P. Dolog. Aspect-
oriented change realizations and their interaction. e-
Informatica Software Engineering Journal, 3(1):43–58, 2009.

[22] D. Wiese, R. Meunier, and U. Hohenstein. How to convince
industry of AOP. In Proc. of 6th International Conference on
Aspect-Oriented Software Development, Vancouver, British
Columbia, Canada, Mar. 2007. ACM.

NEMARA’12, March 27, 2012, Potsdam, Germany 5


