Noname manuscript No.
(will be inserted by the editor)

A Configurable Use Case Modeling Metamodel with

Superimposed Variants

Valentino Vranié¢ - Lubo$ Zelinka

Received: 15 December 2009 / Accepted: 18 April 2010

Abstract There is a variety of approaches to use case
modeling, especially regarding textual use case descrip-
tion as their true form. Under certain circumstances,
the use of each one of these approaches may be justified.
It appears that use case modeling notations are close
enough to each other to allow for constructing a com-
mon, configurable use case modeling metamodel. Such
a metamodel is proposed in this paper. It adapts and
extends UML metamodel elements relevant to use cases
that covers their graphical portion to cover different use
case modeling notations with a special attention given
to the elements of textual expression of flows of events
in use cases. The configuration options of the proposed
use case modeling metamodel and its configurations
representing Jacobson’s and Cockburn’s notation are
presented and discussed. To better express configura-
tion dependencies and avoid option interaction (due to
which an unexpected behavior occurs), revealed in a
practical evaluation by a configurable use case mod-
eling tool prototype, the options have been arranged
into a feature model and the approach of superimposed
variants has been applied to the metamodel. The meta-
model may serve as a basis for a configurable use case
modeling tool or notation-specific tools. More impor-
tant, it provides a framework for a consistent applica-
tion of the use case modeling notation in one or across
several organizations. It can also be used to facilitate
a use case model interchange between notation-specific
tools based on the metamodel.

V. Vranié¢ - L. Zelinka

Institute of Informatics and Software Engineering, Faculty of
Informatics and Information Technologies, Slovak University
of Technology in Bratislava, Ilkovicova, 84216 Bratislava 4,
Slovakia

E-mail: vranicQfiit.stuba.sk

Keywords Use case - Metamodel - Configuration -
Feature model - Superimposed variants

1 Introduction

Use cases are widely used, but often degraded to be
merely UML diagrams with only a few words of descrip-
tion. Being UML standardized gives a false impression
of uniformness of use case diagrams. Indeed, although
there are other graphical notations of use case diagrams
ranging from those close to the UML notation [6,10] to
some quite different notations [5], in practice, use case
diagrams are truly a realm of UML. However, UML
does not prescribe any notation for the textual use case
description, which is the main form of use cases as they
were invented [13], while use case diagrams serve mostly
as an overview or catalog of the use case model [6].

There is a variety of approaches to use case model-
ing, especially regarding textual use case description.
Under certain circumstances, the use of each one of
these approaches may be justified. Developers are inter-
ested in having their use case modeling notation sup-
ported by a tool. However, the tool support of a partic-
ular notation cannot possibly exist without making it
clear what is, and what is not a part of the notation. A
model of models that may exist within a notation—i.e.,
a metamodel—is what is actually needed.

Besides having a separate metamodel of each nota-
tion, a metamodel could cover several sufficiently re-
lated notations and be configured to describe each one
of them as needed. It appears that use case model-
ing notations are close enough to each other to allow

Valentino Vranié¢, Lubo$ Zelinka

for constructing such a common, configurable use case
modeling metamodel, which is the topic of this paper.!

The use case modeling metamodel proposed here
alms at covering the existing variety of approaches to
use case modeling, especially regarding their textual de-
scription as their true form. Such a metamodel may
serve as a basis of a configurable use case modeling
tool. Its configurations represent metamodels of indi-
vidual use case modeling notations and may be em-
ployed in notation-specific tools, but, what is more im-
portant, having a metamodel of a specific notation pro-
vides also a framework for its consistent application in
one or across several organizations.

The paper is further organized as follows. Section 2
analyzes differences in understanding and application of
the use case notation elements focusing mainly on Ja-
cobson’s and Cockburn’s notation. Based on this anal-
ysis, Section 3 introduces a use case modeling meta-
model. Section 4 presents options for the configuration
of this metamodel and their values for Jacobson’s and
Cockburn’s notation. Section 5 describes how the op-
tions have been arranged into a feature model and the
approach of superimposed variants has been applied to
the metamodel in order to better express configuration
dependencies and avoid option interaction revealed in
a practical evaluation by a configurable use case mod-
eling tool prototype, Section 6 explains the possibilities
of the metamodel application. Section 7 discusses re-
lated work. Section 8 brings conclusions and directions
of further work.

2 Diversity in Use Case Modeling

A use case describes a coherent functionality that pro-
vides some result of value to a user. As the term says,
it is a case of a system use [2]. There are many differ-
ent ways of describing use cases, but all of them have
their roots in Jacobson’s or Cockburn’s notation. This
section briefly explains the most prominent elements of
textual use case description as such, and then points
out the differences between Jacobson’s and Cockburn’s
notation. The way use case modeling is used in prac-
tice is to a large extent influenced by the capabilities
of available tools, so an overview of tool support is pre-
sented, too.

1 This paper is an extended version of the paper presented
at ECBS-EERC 2009 [25]. Some findings presented there have
been revised and the configuration of the metamodel has been
supported by a feature model and the approach of superim-
posed variants.

2.1 Textual Use Case Description

A semiformal textual use case description is simply a
natural language text structured using a template which
divides the text into logical parts. Even though there
is no broadly accepted standard use case template, the
existing templates are quite similar. The common parts
of the textual use case description are discussed in this
section.

Name and brief description provide the reader with

basic information about the use case. The use case name—

sometimes called title—uniquely identifies the use case
in the use case model (or at least in its namespace if
the model is partitioned). Use case names may be ac-
companied by identification numbers used to refer to
them.

Actors are roles adopted by external entities that
interact with the system directly [2]. Typically, actors
are user roles, but systems, subsystems, or even time
can all perform as actors. Each actor can participate in
many use cases and each use case can embrace several
actors. It is often distinguished between primary and
secondary actors. Primary actors participate in a use
case to satisfy their goals, while secondary actors help
the system satisfy goals of primary actors.

Preconditions are a set of constraints that should be
fulfilled before the use case starts. Postconditions are a
set of constraints that would be fulfilled after the use
case finishes if preconditions have been satisfied before
it started. This is actually the design by contract [17],
but we may encounter different, less restrictive under-
standing of preconditions and postcondition, putting
them to a merely informative position [26], or a fully re-
stricted view, where the very use case activation is pre-
sumed by fulfilling its precondition [2]. Preconditions
and postconditions are expressed in the form of natural
language statements.

Flows of events—or simply just flows (known also
as scenarios)— represent every possible outcome of an
attempt to accomplish a use case goal [20]. A flow is a
sequence of interactions between an actor and a system.
The interactions start from the triggering action and
continue until the goal is delivered or abandoned [14].
In the textual use case description, the interactions
are represented by steps. Flows are sometimes repre-
sented as prose, but usually they are represented as se-
quences of steps, or—more precisely—partial orderings
of steps [6], as some steps simply do not fit into any
ordering (such as “at any point, a user can cancel the
activity”). Very often, it is distinguished between main
(or basic) and alternative flows. A main flow describes
the normal sequence of steps in the execution of a use
case [3]. Usually, it represents the interaction between

A Configurable Use Case Modeling Metamodel with Superimposed Variants 3

the actor and the system under ideal conditions with-
out alternatives and exceptions. Alternative flows cover
behavior that is of optional, exceptional, or truly alter-
nate character in relation to another flow [3]. They are
dependent on some condition occurring at an explicit
point in another flow. Additionally, another category of
flows can be distinguished: subflows, which are used to
separate repetitive interaction from other flows [14].

Use case relationships are a part of the textual use
case description even though they are not explicitly
present in most of the use case templates. UML offers
two standard relationships between use cases called in-
clude and eztend. The include relationship defines that
a use case contains the behavior defined in another use
case [19]. The purpose of this relationship is to reuse
existing behavior or extract identical behavior. The be-
havior of the included use case is simply inserted into
the behavior described in the including use case. It is
similar to a function call in a programming language,
but the include relationship should not be used for func-
tional decomposition. Functional decomposition of use
cases is in general considered bad practice [6,2] because
it leads to a model with high-level use cases that do not
represent real usage scenarios with a clear goal, but just
an artificial structuring of requirements. For example,
an inexperienced use case modeler may be tempted to
identify a use case like Process Student Data that would
include all kinds of processing student date, but would
not provide a goal of such processing.

The extend relationship is a relationship directed
from the extending use case towards the use case being
extended that specifies how and when the behavior de-
fined in the extending use case can be inserted into the
behavior defined in the use case being extended [19]. It
is typically used to add optional or exceptional behav-
ior without making changes to the behavior described in
extended use case, which is similar to alternative flows.

The extend relationship is used in combination with
extension points, which are named places in the flow
of events where additional behavior can be inserted or
attached [3]. Every flow of events can have multiple
extension points. A common way to define an extension
point in a textual use case description is inserting its
name into the flow of events between two steps. It is
a pretty straightforward way, but every such extension
point refers only to a single step in the flow of events,
which can be limiting. Since steps in flows of events are
usually numbered, it is possible to define an extension
point by a step number or as a range of steps.

2.2 Jacobson’s Notation

Jacobson’s and Cockburn’s use case modeling notation
are well established and distinguished. Consider the ex-
ample in Figures 1 and 2. We can see that Jacobson’s
notation allows multiple main flows.

The extension point is defined by a step number in
a specific flow which suggests the possibility of using
extension points over multiple steps. Beside alternative
flows and subflows, Jacobson employs a special flow de-
noted as extension flow, but it can be seen just as an al-
ternative flow defined in another use case, as confirmed
in Jacobson’s own writing [14].

2.3 Cockburn’s Notation

Cockburn is a strong proponent of a purely textual rep-
resentation of use cases. In the example of extend re-
lationship in Figure 3, the Check spelling use case ex-
tends the Edit a document use case implicitly by its
main flow. There is no explicit extension point either:
the extension point is referred to descriptively in the
trigger part of the textual description.

2.4 Tool Support

While general UML modeling tools such as IBM Ras-
tional Software Modeler or Enterprise Architect offer
some support of use case modeling, there are also ded-
icated use case modeling tools with usually better cov-
erage of textual use case description. The challenging
areas of use case modeling support are flows and use
case relationships because their changes affect the in-
tegrity of textual use case descriptions. Based on the
creation of textual use case descriptions, it is possible
to distinguish three categories of use case tools: text
based, template based, and model based tools.

In the text based use case modeling tools, the tex-
tual use case description—including flows and use case
relationships—is written as plain or formatted text into
an unstructured text box. Some tools in this category
support formatted text, which makes the textual use
case descriptions easier to read. The general problem of
these tools is the lack of the support for the textual use
case description maintenance. Examples of such tools
include ArgoUML, Poseidon for UML, and IBM Ratio-
nal Software Architect.

In the template based use case modeling tools, a
static or dynamic template is used to create textual
use case descriptions. Templates basically partition the
description text (plain or formatted). Common parti-
tionings distinguish between flows and a range of sim-

Valentino Vranié¢, Lubo$ Zelinka

Use Case: Reserve Room

Basic Flows:

B1. Reserve Room

The use case begins when a customer wants to reserve a room.

1. The customer selects to reserve a room.

2. The system displays the types of rooms the hotel has and
their rates.

3. The customer Check Room Cost.

4. The customer makes the reservation for the chosen room.
5. The system deducts from the database the number of
rooms of the specified type available for reservation.

6. The system creates a new reservation with the given
details.

7. The system displays the reservation confirmation number
and check-in instructions.

8. The use case terminates.

B2. Reserve Room by Phone

1. The receptionist receives a call or fax from a customer
wanting to reserve a room.

Alternate Flows:
A1l. Duplicate Submission

If in step 5 of the basic flow there is an identical reservation
in the system (same name, e-mail, and start and end
dates), the system displays the existing reservation and asks
the customer if he wants to proceed with the new reservation.

1. If the customer wants to continue, the system proceeds
with the reservation, and the use case resumes.

2. If the customer indicates that the new reservation is a
duplicate, the use case terminates.

Subflows:

S1. Check Room Cost

1. The customer selects his desired room type and indicates
his period of stay.

2. The system computes the cost for the specified period.

Extension Points:
E1l. Update Room Availability

The Update Room Availability extension point occurs at step
5 of the Basic Flow.

Use Case: Handle Waiting List
Extension Flows:
EF1. Queue for Room

This extension flow occurs at the extension point Update
Room Availability in the Reserve Room use case when there
are no Rooms of the selected type available.

1. The system creates a pending reservation with a unique
identifier for the selected Room type.

2. The system puts the pending reservation into a waiting
list.

3. The system displays the unique identifier of the pending
reservation to the customer.

4. The base use case terminates.

Fig. 2 An extension use case in Jacobson’s notation [14];
adapted.

Fig. 1 A use case in Jacobson’s notation [14]; adapted.

ple description items, such as use case name, brief de-
scription, preconditions, postconditions, and other sim-
ilar parts of the textual use case description that are
not numbered. In case of dynamic template support,
the templates can be adapted by adding new or remov-
ing existing types of flows and description items to fit
the user needs. While the maintainability of textual use
case descriptions is still problematic even in such tools,

Use Case: Edit a document

Primary actor: user

Scope: Wapp

Level: user goal

Trigger: User opens the application.
Precondition: none

Main success scenario:
1. User opens a document to edit.
2. User enters and modifies text.

... User saves document and exits application.
Use Case: Check spelling

Primary actor: user

Scope: Wapp

Level: subfunction!

Precondition A document is open

Trigger: Anytime in Edit a document that the document
is open and the user selects to run the spell checker.

Main success scenario:

Fig. 3 Cockburns’s use case modeling notation [6].

they are at least easier to read and write. For example,
Visual Paradigm and Enterprise Architect fall into this
category.

In model based use case modeling tools, textual
use case descriptions are based on a specific use case
model. These tools usually contain sophisticated for-
matted text editors that directly manipulate the struc-
tured textual use case descriptions according to the use
case model. For example, every step is a part of a spe-
cific flow, which allows the user to perform changes in
the order of steps that result in automatic renumber-
ing of affected steps and other parts of the textual use

A Configurable Use Case Modeling Metamodel with Superimposed Variants 5

case description that depend on them like alternative
flows or extension points. This is only one of many ways
how tools of this category help the user to ensure the
integrity of textual use case descriptions. Visual Use
Case and CaseComplete are examples of model based
use case modeling tools.

3 Establishing a Metamodel

The diversity in use case modeling can be concisely cap-
tured in a configurable metamodel, which can serve as a
basis for the development of configurable use case mod-
eling tools. Each configuration of the overall metamodel
represents the metamodel of a specific use case model-
ing notation and can be used to regularize the applica-
tion of this notation similarly as the UML metamodel
regularizes the application of UML.

Since use case modeling is partially covered by the
UML metamodel, we will adapt and extend it with the
notions needed to cover the textual part of use cases.
However, our aim was not to extend the UML speci-
fication, but to develop a concise, standalone use case
modeling metamodel. Integration into the UML meta-
model is a part of our ongoing work.

As the UML metamodel, we also rely on the notion
of a metaclass that represents a class of the notation ele-
ment. The notation elements, in turn, are classes them-
selves; hence the name metaclass, which literally means
a class beyond another class.

3.1 Flows

Flows of events (Flow) are an essential part of the tex-
tual use case description (see Figure 4). Each flow con-
sists of steps (Step). This is a generally accepted idea,
yet actual step representation, including their ordering,
may vary significantly and as such is beyond this meta-
model. However, in our metamodel, we do recognize the
possibility of existence of specialized steps (TypedStep)
with an agreed meaning given by their type (StepType)
which could be defined by their name, the list of param-
eters, and the list of parameter names. Examples of step
types embrace various conditional and loop statements.

Three types of flows can be recognized: main (ba-
sic) flow (MainFlow), subflow (Subflow), and alterna-
tive flow (AlternativeFlow). In general, a use case may
have any number of main flows—even none—though
some approaches may require a main flow [6].

A use case without a main flow would represent
a use case that could not be activated directly by an
actor. Instead, it would be intended just for inclusion
in other use cases or to extend them, in which case

it should provide one or more subflows or alternative
flows, respectively.

A use case may include preconditions and postcon-
ditions, which are a kind of a constraint (Constraint).
Other parts of the textual use case description vary sig-
nificantly among approaches and even in a particular
approach depending on software analyst preferences, so
they are just indicated as any kind of a description item
(Descriptionltem).

In our metamodel, we made the participation rela-
tionship between Actor and UseCase explicit whereas
in the UML metamodel it is given by the fact that these
two metaclasses are derived from BehavioredClassifier
which allows for them to be associated [19].

An alternative flow is activated, usually according to
a constraint (Constraint), in a particular step (Step). In
some approaches, it is possible to specify the execution
order of the alternative flow with respect to the step
affected by it usually before, after, or around it, i.e.
with the full control upon the step, just like advices in
aspect-oriented programming [14].

Any flow can have subflows. A use case with no
flows can be an abstract use case intended to be spe-
cialized [2].

3.2 Relationships

In general, there are two types of use case relationships:
include and extend. The UML metamodel recognizes
both of them as a special kind of DirectedRelationship,
which is the metaclass the general dependency is de-
rived from, too, making them a close relative of it [19].
However, some organizations tend to ignore the extend
relationship and, hypothetically, there could be organi-
zations that wouldn not provide not even the include
relationship.

The include relationship (see Figure 5) means an in-
clusion of a specific flow from another use case (FlowIn-
clusion) in one or several steps of the including use case
(Step). We opt for inclusion of a general flow (Flow),
although it is unlikely that someone would want to in-
clude an alternative flow. The inclusion of a flow may
be constrained (Constraint).

The inclusion of a flow (Flowlnclusion) is possi-
ble even without the corresponding include relationship
(zero multiplicity of Include), which covers flow activa-
tions of a use case own flows.

The extend relationship means an extension of one
or several extension points (ExtensionPoint) of the use
case being extended by a specific extension flow (FlowEx-
tension). Some approaches allow only an alternative
flow to serve as an extending flow [14], but this is not

6 Valentino Vranié¢, Lubo$ Zelinka
>
Constraint . tpostcondition 0.1 Flow ¢1 a— +flowStep —
. _tprecondition 0_?\/ x -
* [+postcondition +precondition V\ TypedS
ypedStep
1 [+stepType
StepType
UseC
0.? seCase
s
* 1
+ useCase
+ actor + descriptionltem
Actor Descriptionltem
Fig. 4 Flows.
Step T TowStep +ow P Flow As with the flow inclusion, the extension of a flow

1.* 1+ includedFlow
+ includingStep

UseCase

*

*
FlowlInclusion

* *

+ inclusion [Include
tinclude o 4 L—

1 1
+ includedUC | +includinguUC

+ include

*

0.1

*

+ inclusionConstraint
Constraint

Fig. 5 The include relationship.

generally accepted, so our metamodel allows any kind
of flow in this role (Figure 6).

Analogously to alternative flows—which actually act
as extension flows in a single use case—some approaches
allow to specify the execution order of the extension
flow with respect to the extension point, again usually
before, after, or around it, i.e. with the full control upon
the extension point.

An extension point (ExtensionPoint) is merely a
name of the step or a range of steps (startingStep—
endingStep) represented by an extension location (Ex-
tensionLocation exposed by the use case being extended.
The extension of a flow may be constrained (Constraint).
In the UML metamodel, there is at most one constraint
for each extend relationship. Our metamodel allows sev-
eral constraints for each extension flow.

(FlowExtension) is possible even without the correspond-
ing extend relationship (zero multiplicity of Extend and

ExtensionPoint with respect to ExtensionLocation), which
covers flow alterations of a use case own flows.

4 Basic Metamodel Configuration

The use case modeling metamodel proposed in the pre-
vious section can be configured to represent an estab-
lished notation or simply to define a use case modeling
that fits the needs of a particular organization. This
can be done mostly by directly omitting metaclasses
or restricting multiplicities of associations in the meta-
model. Such a restriction can represent any subset of
values allowed by the original multiplicity, but only a
total restriction to zero is of practical meaning for the
metamodel configuration presented here since it is equal
to the omission of the respective association. Also, if
multiplicities of all roles a metaclass participates in are
restricted to zero, it can be omitted from the meta-
model.

Omitting metaclasses and restricting multiplicities
might be seen as a low-level metamodel configuration.
To make the configuration easier, most of the configu-
ration options can be represented as Boolean variables
where true stands for the original multiplicity, and false
for zero multiplicity. Table 1 presents the list of the
Boolean configuration options and their values in Ja-
cobson’s (J) and Cockburn’s (C) notation, which we
discussed in Section 2.2 and 2.3.

Single-Step Fxtension Points requires the lower limit
of the multiplicity of the endingStep role of the Step
metaclass to be 0. Range Fxtension Points requires the

A Configurable Use Case Modeling Metamodel with Superimposed Variants 7

+ extended
UseCase 1 * extendingUC * Extend
+extends
1 *extendedUC N
1| + useCase 0.1
+ extend
* | + extensionPoint
ExtensionPoint
0..1 | + extensionPoint fonsi
+ extension
0..1| + step 1. .
ExtensionLocation = gxtensionLocation - EF owExtension . + execuhonO(;dt:r ExecutionOrder
* * . 0..

+ startingStep | + endingStep
1 0.1

Step

Fig. 6 The extend relationship.

1.+ T TflowStep

Table 1 The use case metamodel configuration options and
their values (Y if present, N if not present) in Jacobson’s (J)
and Cockburn’s (C) notation.

Property

Single-Step Extension Points
Range Extension Points
Mandatory Main Flow

Multiple Main Flows

Subflows

Subflows in Main Flows
Subflows in Alternative Flows
Subflows in Subflows

Alternative Flows

Alternative Flows in Main Flows
Alternative Flows in Subflows
Alternative Flows in Alternative Flows
Extension

Multiple Extension Locations in an Extension
Extension by a Specific Flow
Extension Constraint

Extension Flow Execution Order
Inclusion

Inclusion Constraint

Inclusion of a Specific Flow
Description

Typed Steps

Preconditions

Postconditions

Flow Preconditions

Flow Postconditions

ZZHKHKZKZZKEKKZ KKK R KR K22 K
ZZHKHKZKZZKZZKZK KKK 2220

upper limit of the multiplicity of the startingStep role
of the Step metaclass to be 1 (see Figure 6).

Mandatory Main Flow restricts the minimum mul-
tiplicity of the mainFlow role of the MainFlow meta-
class to 1, while no Multiple Main Flows would mean
restricting its maximum to 0 (see Figure 4).

+ extendingFlow

0.1

Flow
+flow

Constraint

Options Subflows, Alternative Flows, Inclusion, and
Ezxtension have the meaning of the very presence of re-
spective metaclasses Subflow, AlternativeFlow, Inclu-
sion, and Extension.

If subflows are allowed, their inclusion can be re-
stricted with respect to the type of the including flow by
the following options: Subflows in Main Flows, Subflows
in Alternative Flows, and Subflows in Subflows. There
are analogous options for alternative flows with respect
to what types of flows they can be applied: Alternative
Flows in Main Flows, Alternative Flows in Subflows,
and Alternative Flows in Alternative Flows. All these
options would be realized by constraining associations
Flow—InclusionFlow and Flow—ExtensionFlow to allow
only desired subtypes of Flow.

The rest of Boolean options are realized by restrict-
ing the corresponding maximum multiplicities of the
roles as listed below (the metaclasses to which the roles
apply are introduced in parentheses):

— no Multiple Extension Locations in an Extension:
extensionLocation (ExtensionLocation) multiplicity
is1

— no Extension by a Specific Flow: extendingFlow (Flow)
multiplicity is O

— no Extension Constraint: extensionConstraint (Con-
straint) multiplicity is O

— no Extension Flow Execution Order: executionOrder
(ExecutionOrder) multiplicity is 0

— no Inclusion Constraint: inclusionConstraint (Con-
straint) multiplicity is O

— no Inclusion of a Specific Flow: includedFlow (Flow)
multiplicity is O
The Description option has the meaning of the pres-

ence of the Description Item metaclass (see Figure 4).

Valentino Vranié¢, Lubo$ Zelinka

The Typed Steps option specifies whether the notation
provides step types, i.e. whether the TypedStep and
StepType metaclasses are present. The notation could
be configured further by providing specific values al-
lowed for the instances of the Descriptionltem meta-
class to determine the structure of the textual use case
description. Similarly, the instances of the TypedStep
and StepType metaclasses could be specified to deter-
mine step types. Also, instances of the ExecutionOrder
metaclass could be used to specify possible execution
order types of extension flows, which are usually be-
fore, after, and around (as has been mentioned in Sec-
tion 3.1).

The absence of the Preconditions and Postcondi-
tions option limits the maximum multiplicity of the
precondition and postcondition of the Constraint meta-
class roles to 0. Similarly, the absence of the Flow Pre-
conditions and Flow Postconditions option limits the
maximum multiplicity of the precondition and postcon-
dition roles of the Constraint metaclass to 0.

The presence of the Alternative Flows in Subflows,
Alternative Flows in Alternative Flows, and Multiple
Extension Locations in an Extension option in Jacob-
son’s notation configuration is estimated: the notation
allows for these options, but we have not actually en-
countered examples that would employ them.

5 Metamodel Configuration Based on
Superimposed Variants

In order to evaluate our approach, we have developed
a prototype of a configurable use case modeling tool.
The tool supports the main, textual part of use case
modeling.

We were mainly interested in testing of the meta-
model and choice of configuration options in practice.
We identified a possibility of having inconsistent con-
figurations of options. Comnsider a configuration with
selected option Subflows and Subflows in Alternative
Flows, but with no Alternative Flows, nor Alternative
Flows in Main Flows. Of course, to solve this, it would
be sufficient to include the Alternative Flows and Al-
ternative Flows in Main Flows options.

Although in the current tool implementation this
problem does not actually produce inconsistent use case
models, users may be confused by not having the ac-
tual capabilities of the options they selected available.
This is actually a feature interaction problem. To deal
with it, feature modeling as an appropriate approach
to configuration representation and validation could be
used [8,27]. In this section, a feature model of the use
case modeling notation is presented and the use case

modeling metamodel is annotated with features from
this model that determine the presence of its elements.

5.1 The Feature Model of the Use Case Modeling
Notation

Feature modeling is a conceptual domain modeling tech-
nique in which concepts are expressed by their features
taking into account feature interdependencies and vari-
ability in order to capture the concept configurabil-
ity [27,8]. It is used to express configurability abstractly
in software product lines shaping their whole implemen-
tation.

There are several feature modeling notations which
are in practice often extended to cover project specific
issues. We will use the basic Czarnecki-Eisenecker fea-
ture modeling notation which is based on the original
FODA notation [15].

Feature diagrams are the main part of feature mod-
els. Feature diagrams are directed trees whose root rep-
resents a concept with the rest of the nodes being its
features. Variability of the features is expressed by dif-
ferent kinds of edges and edge decorations (arcs) and by
the structure of the tree since a feature may be selected
only if its parent feature has been selected. Textually
represented additional constraints may accompany fea-
ture diagrams.

Feature configurations that are in accordance with
the feature variability constraints represent concept in-
stances [27]. They may be represented also by feature
diagrams. If all configuration is static, then concept in-
stances will contain no variable features. We do not
consider here more sophisticated approaches to concept
instantiation like the staged configuration [9] or instan-
tiation time based approach [27].

The concept that has to be modeled here is the use
case modeling notation. As features in feature model-
ing are understood as important properties of concepts
intended primarily to discriminate between concept in-
stances [8], Table 1 represents a good source of features
for this concept. Figure 7 shows the feature model of
the use case modeling notation. All use case modeling
notations have the notion of a flow, so it is modeled as
a mandatory feature Flow, which is denoted by an edge
with a filled circle arrowhead. There is always possibil-
ity to have a main flow, which is modeled as a manda-
tory subfeature of the Flow feature. Actually, the main
flow may be mandatory in all use cases, which is ex-
pressed by the optional Mandatory Main Flow feature.
Optionality is denoted by an empty circle arrowhead.
Also, there may be multiple main flows in the use case,
which is also modeled as an optional feature, Multiple
Main Flows.

A Configurable Use Case Modeling Metamodel with Superimposed Variants 9

Use Case Modeling Notation

Postconditions

Flows

S — e
Postconditions

T edSte S
Alternative Flow
Q
Mandatory Main Flow Extensions
Multiple Main Flows c
Subflow

Inner Inclusions

Outer Inclusions
(@]
Inclusion Constraint

‘ Inclusion of a Specific Flow ‘

In Main Flows
In Subflows

‘ Extension by a Specific Flow ‘

In Alternative Flows
Q
Execution Order

In Main Flows
A}
Extension Constraint

In Subflows
o]
Extension Points

Outer Extensions Range

1. Use Case Modeling Notation.Flows.Flow Types.Main Flow.Mandatory Main Flow
= (Use Case Modeling Notation.Flows.Flow Types.Subflow
V Use Case Modeling Notation.Flows.Flow Types.Alternative Flow)

In Alternative Flows

2. Inner Extensions < Alternative Flow
Inner Inclusions = Inclusion of a Specific Flow
4. Inner Extensions = Extension of a Specific Flow

w

Fig. 7 The feature model of the use case modeling notation.

Not all use case modeling notations have to sup-
port subflows and alternative flows, whose availability
is therefore modeled by optional features Subflow and
Alternative Flow. Notations may restrict the applicabil-
ity of subflows with respect to the type of the flow from
which they may be referred to. This is modeled by a
group of or-features (indicated by a filled arc) consist-
ing of the following features: In Main Flows, In Sub-
flows, and In Alternative Flows. At least one feature
has to be selected in the group of or-features. By this,
a meaningless configuration with an unspecified subflow
application would be prohibited.

If the notation supports neither subflows, nor alter-
native flows, there is no sense in stating explicitly that
a main flow is mandatory. This is expressed by con-
straint 1 in Figure 7. Constraints are expressed as pred-
icate logic expressions with only one predicate which
takes a feature as its only parameter and evaluates to
true if the feature is included in the current concept in-
stance. To keep the expressions concise, the actual pred-
icate is omitted and only feature names are displayed.
Furthermore, the name of the feature is unqualified if
it is unique in the whole feature model.

The same scheme applies to alternative flows with
the difference in the interpretation of the or-features

modeling their applicability. In this case, due to the
nature of alternative flows, they represent types of the
flows that may be affected by alternative flows.

In all notations, flows consist of steps, which is ex-
pressed by the Steps mandatory feature. Some nota-
tions may support typed steps, modeled by the optional
Typed Step feature, which, in turn, requires step types
to be defined, expressed by the mandatory Step Types
feature.

A notation may allow preconditions and postcondi-
tions to be applied to specific flows, which is modeled
by the Preconditions and Postconditions optional sub-
features of the Flow feature. Some notations may allow
preconditions and postconditions to be associated with
use cases as such, which is modeled by equally named
direct features of the Use Case Modeling Notation. The
two possibilities are not exclusive.

Apart from flows, a use case itself may be provided
with a textual description, which is modeled by the De-
scription optional feature. All notations require actors,
so they are modeled by the Actors mandatory feature.

A notation may prohibit the use of the include rela-
tionship between use cases since this often leads to the
undesired functional decomposition (see Section 2.1), so
its presence is modeled by the Inclusions optional fea-

10

Valentino Vranié¢, Lubo$ Zelinka

ture. The include relationship may be targeted not only
at a use case as such, but also at a specific flow, which
is modeled by the Inclusion of a Specific Flow optional
feature. This flow may be a flow of the including use
case itself, which will be denoted as an inner inclusion,
or a flow of another use case, which will be denoted
as external inclusion. Obviously, inner inclusions may
be realized only by specific flows and this is expressed
by constraint 3 in Figure 7. Also, some notations may
support constraining the include relationship and this is
modeled by the Inclusion Constraint optional feature.
The notation may support inner inclusions (inside of
one use case) and outer inclusions with the two not be-
ing exclusive and at least one having to be selected,
which is expressed by the Inner Inclusions and Outer
Inclusions or-features.

The extend relationship also may or may not be
supported by a notation, and this is modeled by the
Extensions optional feature. As the include relation-
ship, it may also be realized at the flow level or not,
modeled by the Extension by a Specific Flow optional
feature, with some notations supporting constraining it,
modeled by the Extension Constraint optional feature.
Similarly to inclusions, extensions may also be inner
and outer, which is expressed by the Inner Extensions
and Outer Extensions or-features. Inner extensions are
in fact alternative flows, and this is expressed by con-
straint 2 in Figure 7. Similarly as inner inclusions, inner
extensions—which are actually alternative flows—may
be realized only by specific flows and this is expressed
by constraint 4 in Figure 7. Some notations may al-
low to express the order in which an extension is to be
executed with respect to the affected extension point,
which is captured by the Extension Order optional fea-
ture. Extension points may be employed, which is mod-
eled by the Extension Points optional feature. If they
are employed, the notation may support expressing the
range of extension points to be affected by an extension,
which is modeled by the Range optional subfeature of
the Extension Points feature.

5.2 Superimposed Use Case Modeling Metamodel

The approach of superimposed variants can be success-
fully used to automate model configuration [7]. A model
contains all possible variants superimposed. The config-
uration space is represented by a feature model. The el-
ements of the model—or actually template model—are
annotated with so-called presence conditions and meta-
expressions® defined in terms of features. Presence con-
ditions determine the presence of the model elements

2 originally meta-expressions [7]

they annotate. Metaexpressions are used to determine
some properties of model elements (e.g., their names or
types they operate on). By this, the selection of fea-
tures fully determines which model elements and rela-
tionships among them should be present. The automa-
tion of this process can be easily achieved by a simple
tool [1].

The basic idea of the approach is illustrated by Fig-
ure 8. A simple UML class model® with two superim-
posed variants is configured by a feature model. Pres-
ence conditions are introduced in the form of tagged
values (in curly brackets). Class A is present in the
model only if feature F5 is selected. Similarly, class B is
present in the model only if feature F6 is selected. Note
that associations are not annotated: they are removed
by implicit presence conditions as their presence is de-
termined by the presence of the classes they connect.
The implicit presence conditions for class diagrams are
quite intuitive; formally, they have been proposed by
Czarnecki and Antkiewicz [7].

The use case modeling metamodel presented in Sec-
tion 3 is already a template model as required by the
approach of superimposed variants, so it will be suffi-
cient to annotate it with the presence conditions and
metaexpressions. Figure 9 shows the annotated part of
the metamodel describing flows. As in the introductory
example to superimposed variants (Figure 8), presence
conditions are introduced in the form of tagged values.
The tag is denoted as config and the value is the name
of the feature that determines the presence of the an-
notated element.

Multiplicities are not modified directly, but constrain-
ed using OCL invariants. For configuration purposes,
we assume the existence of the Config class with the
operation inconfig() taking one string parameter and
returning a Boolean value. The operation returns true
if the feature model configuration contains a feature
with the name provided as a parameter. As with feature
model additional constraints, the name of the feature
is unqualified if it is unique in the whole feature model.
As an example, consider the first OCL constraint in
the group of constraints attached to Use Case in Fig-
ure 9: if the notation requires a mandatory main flow
in each use case, that restricts Use Case to MainFlow
multiplicity at the mainFlow role to be at least one.

Figure 10 shows the annotated part of the meta-
model describing the include relationship. The OCL
constraint attached to FlowInclusion (indicated by el-
lipsis) due to its length is introduced here:

inv: not Config::inconfig("Inner Inclusions")
implies include—>count() = 1

3 one of basic object-oriented models that describes classes

and relationships among them

A Configurable Use Case Modeling Metamodel with Superimposed Variants 11

A
{config = F5}

B
{config = F6}

Fig. 8 Configuring a model containing superimposed variants.

inv: not Config::inconfig("Flows.Preconditions")
implies precondition->count() = 0

inv: not Config::inconfig("Flows.Postconditions")
implies postcondition->count() = 0

+flowStep

|
+postcondifion 0_? P

Constraint * Flow »

« +precondition 01’

+precondition

*

+postcondition

+low 1 Step

TypedStep
{config = Typed Steps}

Subflow
{config = Subflow}

MainFlow

AlternativeFlow

+ useCase

* *

{config = Alternative Flow} *
1| +stepType
> +alternativeFlow pyP
StepType

{config = Typed Steps}

inv: Config::inconfig("Mandatory Main Flow")

- implies mainFlow->count() >= 1

inv: not Config::inconfig("Use Case Modeling Notation.Preconditions")

+ actor + descriptionltem implies precondition->count() = 0

inv: not Config::inconfig("Use Case Modeling Notation.Postconditions")

Actor Descriptionitem implies postcondition->count() = 0
{Description}

Fig. 9 The flow metamodel part annotated with features.

inv: includedFlow.ocllsTypeOf(Subflow)
and includingStep.flow—>forAll(
o : Flow | o.ocllsTypeOf(MainFlow))
implies Config::inconfig("
Use Case Modeling Notation.
Subflow.In Main Flows")

inv: includedFlow.ocllsTypeOf(Subflow)

and includingStep.flow—>forAll(
o : Flow | 0.ocllsTypeOf(Subflow))
implies Config::inconfig("
Use Case Modeling Notation.
Subflow.In Subflows")

inv: includedFlow.ocllsTypeOf(Subflow)
and includingStep.flow—>forAll(
o : Flow | o.ocllsTypeOf(AlternativeFlow))

12

Valentino Vranié¢, Lubo$ Zelinka

implies Config::inconfig("
Use Case Modeling Notation.
Subflow.In Alternative Flows")

Step T+ TowStep +Tiow

+ includedFlow

1.%
+ includingStep

*

- UseCase
FlowlInclusion

{config = Inclusion}

1
+ includinguC
+ include

I 1
| + includedUC
1

| " Include

{config = Outer Inclusions}
=" 0.1

inv: not Config::inconfig("Inclusion Constraint") B‘

implies inclusionConstraint->count() = 0

* [+ inclusionConstraint
Constraint

Fig. 10 The include relationship metamodel part annotated
with features.

The first invariant attached to the FlowlInclusion
metaclass ensures that if the notation does not sup-
port inner inclusions, each flow inclusion is bound to
an include relationship. The rest of the invariants at-
tached to the FlowInclusion metaclass serve to transfer
the limitations of the applicability of subflows with re-
spect to the flow types that employ them given by the
feature model to the metamodel.

Figure 11 shows the annotated part of the meta-
model describing the extend relationship. The OCL con-
straint attached to FlowInclusion (indicated by ellipsis)
due to its length is introduced here:

inv: not Config::inconfig("Inner Extensions")
implies extend—>count() = 1

inv: not Config::inconfig("Extension Constraint")
implies extensionConstraint—>count() = 0

inv: extendingFlow.ocllsTypeOf(Alternative Flow)
and extensionLocation.startingStep.flow—>forAll(
o : Flow | o.ocllsTypeOf(MainFlow))
implies Config::inconfig("
Use Case Modeling Notation.
Alternative Flow.In Main Flows")

inv: extendingFlow.ocllsTypeOf(Alternative Flow)
and extensionLocation.startingStep.flow—>forAll(
o : Flow | o.ocllsTypeOf(Subflow))
implies Config::inconfig("
Use Case Modeling Notation.

Alternative Flow.In Subflows")

inv: extendingFlow.ocllsTypeOf(Alternative Flow)
and extensionLocation.startingStep.flow—>forAll(
o : Flow | o.ocllsTypeOf(AlternativeFlow))
implies Config::inconfig("
Use Case Modeling Notation.
Alternative Flow.In Alternative Flows")

The first invariant attached to the FlowExtension
metaclass ensures that if the notation does not sup-
port inner extensions, each flow extension is bound to
an extend relationship. The second invariant regulates
the presence of extension constraints. The rest of the
invariants attached to the FlowExtension metaclass—

similarly to those attached to the FlowInclusion metaclass—

serve to transfer the limitations of the applicability of
alternative flows with respect to the affected flow types
given by the feature model to the metamodel.

6 Applying the Metamodel

The metamodel may serve as a basis for a configurable
use case modeling tool. As we mentioned in Section 5,
we developed a prototype of such a tool that directed
us towards feature modeling as an appropriate way of
expressing nontrivial configuration options. In a con-
figurable use case modeling tool, the metamodel with
superimposed variants would have to be configured dy-
namically according to these options.

Apart from this, the metamodel can be used to as-
sure notation consistency or to develop notation-specific
tools. It also provides a basis for the use case model in-
terchange among such tools.

6.1 Assuring Notation Consistency

Desired properties of the notation can be conveniently
expressed in terms of the use case modeling notation
feature model. A particular notation metamodel can
be derived from the general metamodel according to
the features that have been selected by their manual or
automatic (requiring an additional tool support) eval-
uation. Such a configured metamodel could be used as
a basis for a notation-specific tool. More important, it
would provide a framework for a consistent application
of the notation in one or across several organizations.
Consider, for example, an organization decides to
enforce a consistent application of a particular use case
notation by providing their analysts with this notation
metamodel. Suppose they opt for a simpler notation
with at most one main flow per use case and with al-
ternative flows, but no subflows (see Figure 12). Each

A Configurable Use Case Modeling Metamodel with Superimposed Variants 13

UseCase ‘1 + extendingUC

Extend
{config = Outer Extensions}

1+ extendedUC

1| + useCase

*

+ extensionPoint
ExtensionPoint
{config = Extension Points}

0..1 |+ extensionPoint

0..1| + step

0.1
+ extend ExecutionOrder
{config = Execution Order}
0..1
+ executionOrder
+ extension
1.* 1

ExtensionLocation
{config = Extension Points}

+ extensionLocation

*

* *

1 0.1

1
|
|
i + startingStep | + endingStep
|
|
|
]

Step
1.+ t+TflowStep

inv: not Config::inconfig("Range")
implies endingStep = OclUndefined

Flow |
+flow

FlowExtension
{config = Extension by a Specific Flow} ~

* 0.1

+ extendingFlow + extensionConstraint

0.1 *
| Constraint |

Fig. 11 The extend relationship metamodel part annotated with features.

flow may be accompanied with its own preconditions
and postconditions. Use cases as such have no precon-
ditions or postconditions. The notation supports both
outer and inner inclusions and extensions with a pos-
sibility to include or extend by a specific flow. It also
supports extension constraints and relies on a descrip-
tive expression of extension points.

Figure 13 shows the resulting configuration of the
use case modeling metamodel. The OCL constraints
in the metamodel have been evaluated statically where
possible to make as much as possible information avail-
able directly in the diagram. This resulted in constrain-
ing the UseCase-MainFlow multiplicity at mainFlow
to 1..* (was *), constraining the UseCase—Constraint
multiplicity at precondition and postcondition to 0 (was
0..1) which actually lead to the removal of both associ-
ations, constraining the Constraint—Include multiplic-
ity at Include to 0 (was 0..1) which again lead to the
removal of the associations.

The metamodel in Figure 13 can be provided to
analysts—presumably accompanied by a textual des-
cription—so they can adhere to it.

6.2 Use Case Model Interchange

The metamodel could be used to facilitate a use case
model interchange between notation-specific tools based
on the metamodel instances by providing a framework
for an automated transformation built upon the same
metamodel. In this transformation, each feature would
be associated with the features that can be used as a

substitute in the target notation if it does not support
the original feature. For example, if absent in the target
notation, alternative flows could be substituted by sub-
flows. If the target notation does not support subflows
either, main flows could be used. This rough example
indicates an ordering of the substitution features would
have to be defined, but in practice complex dependen-
cies among features would have to be defined many of
which could be configurable. This is one of directions
for further work.

7 Related Work

Hoffman et al. [12] recently proposed an extension of the
UML metamodel to support textual use case descrip-
tion. While our aim was to enable precise definition of
different use case notations to enable their consistent
application by the proposed metamodel configuration,
Hoffman et al. strive for a common, inconfigurable use
case modeling metamodel, which is a substantial dif-
ference. Their main concern is with ensuring consis-
tency between use case diagrams and textual descrip-
tions. To achieve this, they include the steps in the use
case flows in their metamodel. This is complementary
to the metamodel proposed in this paper. However, in
our metamodel, it would be necessary to support nota-
tional variants of step representation.

There have been several other attempts to propose a
unified notation for use case modeling. The UML meta-
model [19] is a prominent attempt of establishing a
common diagrammatical use case modeling notation.

14

Valentino Vranié¢, Lubo$ Zelinka

Flows

Alternative Flow

‘ In Main Flows ‘ ‘

Inner Extensions

Postconditions

Steps ‘

Fig. 12 Features of an example use case modeling notation.

‘ Use Case Modeling Notation ‘

Extensions

Outer Extensions
Extension Constraint

Inclusion

‘ Extension by a Specific Flow ‘

‘ Inclusion of a Specific Flow ‘

Outer Inclusions
Inner Inclusions

*precondition Constraint

+postcondition

+ extensionConstraint

0.1 0.1 0.1
Step T+ TowStep +low ? Flow 01 T extendingFlow +— FlowExtension
1. 1 -+ includedFlow 1.%
+ includingStep + extension
| MainFlow | | AlternativeFlow
Flowlnclusion 1..* \+ mainFlow */ +alternativeFlow
+ extend
* 1 1 0.1
+ inclusion 1 UseCase 1 + extendingUC * Extend
+include + includedUC 1 T extendedUC .
0.1
* + includir119UC
Include 1
+include + useCase
+ actor + descriptionltem
| Actor | | Descriptionltem

Fig. 13 A metamodel instance.

Although our aim was not to extend the UML meta-
model, we used it as a basis for our use case modeling
metamodel.

Rui and Butler [22] proposed a use case modeling
metamodel focused on a single use case modeling no-
tation. Others have focused on unifying specific nota-
tional issues in use case modeling such as alternative
flow types [16], formalizing the include and extend rela-
tionships [4], or even formalizing use cases as such [23].

In applying the superimposed variants to the use
case modeling metamodel, we relax the notion of meta-
expressions proposed by Czarnecki and Antkiewicz [7]
and use OCL constraints instead. Metaexpressions have
originally been intended to statically determine parts
of the model. Unlike metaexpressions, the OCL con-
straints have to remain in model variants (unless the
elements they are attached to have been left out, of
course). However, they can serve as a specification to

rearrange the variant statically and be left out after-
wards as metaexpressions are.

While feature modeling is basically in accordance
with the graphical way of expressing metamodels we
stick to, some constraints had to be expressed in a non-
graphical form [27]. Other object-oriented metamodels
have been expressed in a purely non-graphical form [21]
even in cases when they define graphical models [18].

8 Conclusions and Further Work

In this paper, a configurable use case modeling meta-
model with superimposed variants has been proposed
to cover the existing variety of approaches to use case
modeling, especially regarding their textual description
as their true form. Under certain circumstances, the
use of each one of these approaches may be justified,
so the intention of the metamodel is not to enforce the

A Configurable Use Case Modeling Metamodel with Superimposed Variants 15

“right” one, but to specify a family of use case modeling
notation metamodels.

The use case modeling metamodel is based on the
UML metamodel elements relevant to use case model-
ing adapted and extended to cover different use case
modeling notations with a special attention paid to the
elements of textual expression of flows of events in use
cases.

The configuration options of the proposed use case
modeling metamodel have been identified. The actual
configuration option values for Jacobson’s and Cock-
burn’s notation, as the two most influential use case
modeling notations, have been presented and discussed.

To better express configuration dependencies and
avoid option interaction revealed in a practical eval-
uation by a configurable use case modeling tool pro-
totype, the options have been arranged into a feature
model and the approach of superimposed variants has
been applied to the metamodel. This involved specify-
ing presence conditions by tagged values and metaex-
pressions in the form of OCL expressions attached to
metaclasses.

The metamodel may serve as a basis for a config-
urable use case modeling tool or notation-specific tools.
More important, it provides a framework for a consis-
tent application of the notation in one or across sev-
eral organizations. It can also be used to facilitate a
use case model interchange between notation-specific
tools based on the metamodel instances by providing a
framework for an automated transformation built upon
the same metamodel.

We expect our metamodel would develop further to
embrace other possibilities of use case modeling such
as expressing the type of a use case. For example, we
have not considered explicitly business use cases [11],
which certainly deserve attention. We plan to extend
our configurable use case modeling tool prototype and
perform experiments that embrace new features.

Yet another line of further work is to improve the in-
tegration of the elements of our use case modeling meta-
model with the UML metamodel. We would also like to
explore the possibilities of use case model refactoring in
the context of refactoring other UML models [24] and
with respect to their textual representation.

Acknowledgment

The work was supported by the Scientific Grant Agency
of Slovak Republic (VEGA) grant No. VG 1/0508/09.

References

10.

11.

12.

13.

14.

15.

16.

Michal Antkiewicz and Krzysztof Czarnecki. FeaturePlu-
gin: Feature modeling plug-in for Eclipse. In Proceedings
of the 2004 OOPSLA Workshop on Eclipse Technology
Ezchange, eclipse ’04, pages 67-72, Vancouver, British
Columbia, Canada, 2004. ACM Press.

Jim Arlow and Ila Neustadt. UML 2 and the Unified
Process. Addison-Wesley, 2005.
Kurt Bittner and Ian Spence.
Addison-Wesley, 2002.
Alexandre Braganca and Ricardo J. Machado. Extend-
ing UML 2.0 metamodel for complementary usages of the
«extend» relationship within use case variability specifi-
cation. In Proc. of 10th International Software Product
Line Conference, SPLC 2006, pages 123-130, Baltimore,
USA, 2006. IEEE Computer Society Press.

R. J. A. Buhr. Use case maps as architectural entities
for complex systems. I[IEEE Transactions on Software
Engineering, 24(12):1131-1155, 1998.
Alistair Cockburn. Writing Effective
Addison-Wesley, 2000.

Krzysztof Czarnecki and Michal Antkiewicz. Mapping
features to models: A template approach based on su-
perimposed variants. In Robert Gliick and Michael R.
Lowry, editors, Proc. of Generative Programming and
Component Engineering, 4th International Conference,
GPCE 2005, LNCS 3676, pages 422-437, Tallinn, Esto-
nia, October 2005. Springer.

Krzysztof Czarnecki and Ulrich W. Eisenecker. Gen-
erative Programing: Methods, Tools, and Applications.
Addison-Wesley, 2000.

Krzysztof Czarnecki, Simon Helsen, and Ulrich Eise-
necker. Staged configuration through specialization and
multi-level configuration of feature models. Software Pro-
cess: Improvement and Practice, 10:143-169, April/June
2005.

Adenekan Dedeke and Benjamin Lieberman. Qualify-
ing use case diagram associations. IEEE Computer,
39(6):23-29, June 2006.

Jim Heumann. Introduction to business modeling us-
ing the unified modeling language (uml). developer-
Works, IBM, November 2003. http://www.ibm.com/
developerworks/rational/library/360.html.

Veit Hoffmann, Horst Lichter, Alexander Nyfsen, and An-
dreas Walter. Towards the integration of UML- and tex-
tual use case modeling. Journal of Object Technology,
8(3):85-100, 2009. http://www.jot.fm/issues/issue_
2009_05/article2/.

Ivar Jacobson. Object Oriented Software Engineering: A
Use Case Driven Approach. Addison-Wesley, 1992.

Ivar Jacobson and Ng Pan-Wei. Aspect-Oriented Soft-
ware Development with Use Cases. Addison-Wesley,
2004.

Kyo C. Kang, Sholom G. Cohen, James A. Hess,
William E. Novak, and A. Spencer Peterson. Feature-
oriented domain analysis (FODA): A feasibility study.
Technical Report CMU/SEI-90-TR-21, Software Engi-
neering Institute, Carnegie Mellon University, Pitts-
burgh, USA, November 1990.

Pierre Metz, John O’Brien, and Wolfgang Weber. Spec-
ifying use case interaction: Types of alternative courses.
Journal of Object-Oriented Programming, 2(2):111-131,
March 2003.

Bertrand Meyer. Object-Oriented Software Construction.
Prentice Hall, second edition, 1997.

Use Case Modeling.

Use Cases.

16

Valentino Vranié¢, Lubo$ Zelinka

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

Matas Navarc¢ik and Ivan Polasek. Object model no-
tation. In Proc. of 8th International Conference on
Information Systems Implementation and Modelling,
ISIM 2005, Roznov pod Radhostém, Czech Republic,
2005.

Object Management Group. OMG unified modeling lan-
guage (OMG UML), superstructure, v2.1.2, November
2007. http://wuw.omg.org/docs/formal/07-11-02.pdf.
Tom Pender. UML Bible. Wiley, 2003.

Jaroslav Porubédn and Peter Vaclavik. Generating soft-
ware language parser from domain classes. In Proc. of In-
ternational Scientific Conference on Computer Science
and Engineering, CSE 2008, pages 133—-140, Stara Lesn4,
Slovakia, September 2008.

Kexing Rui and Gregory Butler. Refactoring use case
models: The metamodel. In Michael J. Oudshoorn, edi-
tor, Proc. of 26th Australasian Computer Science Con-
ference, ACSC 2003, pages 301-308, Adelaide, Australia,
February 2003.

Perdita Stevens. On use cases and their relationships
in the unified modelling language. In Heinrich Huf-
mann, editor, 4th International Conference on Funda-
mental Approaches to Software Engineering, FASE 2001,
held as a part of the Joint European Conferences on The-
ory and Practice of Software, ETAPS 2001, LNCS 2029,
pages 140-155, Genova, Italy, April 2001. Springer.
Miroslav Stolc and Ivan Polasek. A visual based frame-
work for the model refactoring techniques. In Proc. of
8th International Symposium on Applied Machine Intel-
ligence and Informatics, SAMI 2010, Herlany, Slovakia,
January 2010. IEEE.

Lubos Zelinka and Valentino Vranié. A configurable UML
based use case modeling metamodel. In Proc. of 1st Fast-
ern European Regional Conference on the Engineering of
Computer Based Systems, ECBS-EERC 2009, Novi Sad,
Serbia, September 2009. IEEE Computer Society.
Gunnar Overgaard and Karen Palmkvist. Use Cases:
Patterns and Blueprints. Addison-Wesley, 2004.
Valentino Vranié. Reconciling feature modeling: A fea-
ture modeling metamodel. In Matias Weske and Pe-
ter Liggsmeyer, editors, Proc. of 5th Annual Inter-
national Conference on Object-Oriented and Internet-
Based Technologies, Concepts, and Applications for a
Networked World (Net.ObjectDays 2004), LNCS 3263,
pages 122-137, Erfurt, Germany, September 2004.
Springer.

